AD=AO9Y% 432

UNCLASSIFIED

UTAH UNIV SALT LAKE CITY
THREE DIMENSIONAL STRESS FIELDS IN CRACKED PLATES.(U)

F/8 20/11

NOV 80 E S FOLIAS F#9620-77=C~0053

AFOSR=-TR-81-0017

NL




SETV60V v




'I(+ AFOS __8 1 ﬁ%l 7F&SZTAZC(‘SZZZ;‘£°;DLRECW§ CATALOG NUMBER

L 'IHREE DIMENSICNAL STREISS FIELIE IN CRACKED PLZ\’I'E‘.{J

.
B ERAYYE; - | MSTRLY UMBER(s)
{ C);ﬁgﬁ ( / c F4962/{~77-C%5;1;v

A s
)
S ) g e A T - ;.ﬂ“ F ¥

1<).REPORT DOCUMENTATION PAGE PREAP INSTRUCTIONS

| BEFORE COMPL.Y.TING FORM
'o- REPOR T

~~YITLE (and Subtitg). - e — s.

o

£ ojun‘om & PERIOD COVERED

€Qll (e ) 4

(,_,._ - ’_ .

e

5. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
UNIVERSITY OF UTAH 61102F

SALT LAKE CITY,UTAH” 84112 (_//é L 23978 1 @EI/

11. CONTROLLING OFFICE NAME AND ADDRESS —l{ REPORT DAT

ATR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA /
BOLLING AFB DC 20332

43

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION. DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

FRACTURE

STRESS FIEID

STRESS SINGULARITIES
3-D GRIFFITH CRACK

2} BSTRACT (Continue on reverse side {{ necessary and identily by block number)

A theoretical investigation was made for the determination of “he three
dimensional stress field of a cracked plate, of an arbitary thickness, 2h,

and subjected to a unifomm external load of mode I. The displacement and streLs
fields are expressed in terms of the displacement V projected onto the plane
containing the crack. In addition, the question of uniqueness is examined
for a whole class of these three-dimensional crack problems. It is found that
solutlons to such problens in elastostatlm are umque, prouded they satlsfy

¥

5 oD ":2,:“2,3 1473 EDITION OF 1 NOV 63 15 OBSOLETE ( M L7 e )

| 3(%1q QQ %——M‘AJ#AL%—%—..,
Tenan SUNEMEEREREERE. St hat bt i T T ——— T




e “the solutlon is camplete and it appears that at the corner, where the
, crack frint mdets the free surface of the plate, the solution is mndt *
- separable either in spherical or cylindrical coordinates.

A

A VIS A N
SECURITY CL ASSIPICATIONR DF v ACE  wn )t oem |
. -—— .Ew -' 4 - !5 ”ll
(‘. - C g - ST T e ':’ * 't..n - . -
a
5




T T LEWNEVPREL S Y

i . v e aen

THREE DIMENSIONAL STRESS
FIELDS IN CRACKED PLATES

gt imanm e o 0

by

E. S. Folias
November 1980

' { Final Scientific Report

Prepared Under Contract No. F49620-77-C-0053

i , for
Air Force Office of Scientific Research L}“’"ﬁ"‘.""“-g”
HTIS GRASI =
DTIC TAB
} Unannounced Qa
} Justification m—m—eo
)
! By
! I Distribution/ —

| Availability Codes |

PRSI

~ C

This research was supported by the Air kb .
Force Office of Scientific Research. j /Avail and/or
Reproduction in whole or in part is ‘pist | Speclal
permitted for any purpose of the United

States Government. ‘ ﬂ

- -

-
e, P . -
o)

O

- ——_—

) 3
e, x-S

AIR FORCE OFFICE OF SCIENTL
‘ F1
NOTICE OF TRANSMITTAL T0 pDC ¢ ResEARcH rsc)

1“15 Gcm 0). Xf'pt rt hﬁs beaﬂ r‘vi’"
t l’c <
.” prove 1 Yo oo H d and 1.

d i releonse I
Yistribution 15 unlimiteq, AW AFR 190-12 (7p).

A, D. BLOSK ;
Techrt:al Informmtion Officer

< -~ - ‘sw.
S w e




e

TABLE OF CONTENTS

Abstract
I. Through the Thickness Crack
II. Partial Through the Thickness Crack

III. Uniqueness Theorems

IV. Completeness of the Eipenfunctions for Griffith
Cracks in Plates of Finite Thickness




4 W
. Ny
e

PART I
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1. Introduction.

In the field of Fracture Mechanics not very much theoretical work
has been done in order to assess analytically the three-dimensional
stress character which prevails at the base of a stationary crack. As
a result, most of our current design criteria are based on already
existing two-dimensional solutions and therefore are in general
inadequate. For example, the common experimental observation of a
change from ductile failure at the edge to brittle fracture at the center
of a broken sheet material has so far defied analysis. Yet an orderly
theoretical attack on the problem can provide important guidance to
this and other phases of fracture research.

The mathematical difficulties, however, posed by three-dimensional
fracture problems are substantially greater than those associated
with plane stress or plane strain. Be that as it may, the author would
like to investigate the subject further at least within the theory of
linear elasticity. While he recognizes the fact that this theory can-
not include the .nonelastic behavior of the material at the crack tip
per se, it can evince many characteristics of the actual behavior of

a cracked plate, including those due to thickness. Thus the theory of

elasticity is a logical fountainhead for detailed theoretical study.
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2. Histowrical Development.

There exist in the literature very few analytical papers that deal
specifically with the three-dimensional stress character at the base of
a stationary crack. Moreover, in their present form these papers are
not only incomplete but also contradictory. As a result, much con-
troversy and many doubts have been raised, It is appropriate, therefore,
to discuss these papers and their respective results in chronological
order.

In 1972, Benthem, using the method of separation of variables*,
was able to solve for the stress distribution in the neighborhood of
the corner point** of a quarter plane crack. His results [2] show that
the stresses there behave like p’a , where 0.500 € o < 0.709. In order to
obtain the order of the singularity, Benthem had to trancate an infinite
system which, in turn, he solved ‘for the eigenvalues mumerically. This
approach, however, raises three important questions: One, is the
solution really separable, particularly in 6 and ¢ ? Two, is the
solution thus obtained complete? Three, should the mmerical deter-
mination of the singularity from a truncated system be trusted?
Unfortunately, Benthem has provided no answers to any of the above
important and difficult questions.

A few years later, Folias, using a method developed by Lur'es [3]
apd. the application of Fourier Integral Transforms, was able to solve

[4] Navier's equations for a more complicated problem, that of the

*This method was fully articulated by M.L. Williams [1] for classical
planar elasticity’in order to establish the singular behavior at
Te-entrant corners.

**That is the point where the crack front meets the free surface of
the half space.
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3-D Griffith crack (see Figure 1). The integrals were subsequently
expanded asymptotically and the stress field, valid in the very inner
layers* of the plate, was recovered. From the results, one concludes
that in the very imner layers of the plate:

(1) the stresses possess the usual singularity,

(2) the stresses posses the usual angular distribution,

(3) the stress intensity factor KI is a function of z ,

(4) exact plane strain conditions exist only on the plane z =0 ,

(5) a pseudo plane strain state exists and the equation

o, = \)(cx + oy)

is satisfied,
(6) as the plate thickness 2h + « , the plane solution is recovered,
(7) as Poisson's ratio v + 0 , the plane stress solution is recovered.

Furthermore, he was able to show that at the cornmer the stresses are

proportional to
-(s + 2v)
P fij (0,9).

In order to recover the value of the singularity, Folias solved analyti-
cally a difference-differential equation., Unfortunately, because of
the enormous difficulties which the integral representations presented

at the corner, he was unable at the time to recover the functions

fij (e,4) explicitly.

*The reader should note that the asymptotic expansions are only valid
for (z/h) « 1 and for c¢/h « 1. This is because h was assumed
to be very large so that a perturbation about the well-known plane-
strain solution could be made.




It should be emphasized that Folias's main result at the corner
should be interpreted as ''the singularity at the corner can at most be
of the order (% + 2v)" . This is because the functions fij (9,¢)
could very well be of the type that do vanish* in th~ neighborhood of
the corner point. Thus Folias's result may or may not be in contra-
diction with Benthem's.

Researchers in the field of Fracture Mechanics, however, were
unwilling to accept the possibility of an infinite displacement field
on the basis of physical intuition. Consequently, the results were
considered highly controversial and the following two legitimate questions
were raised**: Is the solution really complete? Two, do the series
representations converge? Unfortumately, Folias provided no answers
to any of the above questions.

In 1976, Kawai [7], using the method of separation of variables
was able to obtain an alternate solution to Benthem's problem. Although
the method of approach is essentially the same as that of Benthenm's,
his results are definitely contradictory***, His results show that at
the corner the stresses behave like p * , where ¥<a <1 . In
determining the singularity, Kawai used the collocation method in order
to satisfy the three boundary conditon on the free surface. Thus, as

in Benthem's case, the same questions apply to this work also.

*The reader should note that this result was actually obtained by
'marching out’ the solution from the inner to the outer layers, and as
a result such a hypothesis may not be totally unreasonable. See &also
comments on p. S.

’E*?ee Discussion of paper by Benthem and Koiter [S5] and author's Closure
6 .

**AMathematically, Kawai's method of construction of the solution is

more systematic than that of Benthem's.
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A few months later, Benthemdiscovered that his previously reported

solution was incomplete and that his new results [8] now read

%33 ~p® with 0<a<k.
Here again, the same questions raised during his previous work apply
too.

Finally, in 1977 Kawai (9] reported anerror in his previous
analysis and although the correction affected slightly the value of
o the trend essentially remained the same.

In the meantime, Folias also discovered that his solution of the
difference-differential equation was not quite complete either*, The
correction, however, does not directly alter the basic result at the
corner.

It is interesting to note that Kawai does recover the same sin-
gularity that Folias reported. The singularity (- %- 4v), however, disappears
as he considers more and more terms in his collocation scheme but at
the same time he experiences convergence problems. This observation
strengthens, perhaps, the hypothesis that Folias's fij (8,4) functions
do indeed vanish in the neighborhood of the cormer point and that most
likely are needed in the very inner layers of the plate. The later has
also been observed by Newman [10] for (c/h) ratios less than one,

which is comparable with the asymptotic expansion used by Folias.

*This is not to be confused with the question of completeness of
the solution to Navier's equations, i.e. eqs. (52)-(54) ref. [4].
The corrected result to eq. (85) of reference [4] is given in Appendix I.
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Be that as it may, the presence of a third solution obscurred the i
issue even further and essentially raised more questions than gave

answers. So the controversy still remains.
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3. Purpose of Present Work.

In view of the preceding, it is evident that mathematical rigour

becomes essential if one is to avoid any possible pitfalls. As a
result, the author decided to seek the answers to the following two
. important questions first:
‘ (1) Is the solution of this notoriously difficult problem
unique? And if so, under what conditions?

(ii) 1Is the solution to Navier's equations as given by the
author in reference [4], i.e. egs. (52)-(54), general
enough to represent the solution of this practical
problem?

The answers to both of the above questions were given by Prof. Calvin
Wilcox.

First of all, he was successful in proving* [11] that a displace-

ment field that satisfies the condition of local finite energy is

\

unique. This of course is quite a departure from our traditional ,' P
.

2-D fracture mechanics thinking, for the displacements now can "bé": L

allowed to be singular. Consequently, one may not apriori assume them
to be finite as it is customerily done. In general, such an assumption
makes the class of SOlu}',tiOns too restrictive and, as a result, one may
not find a solution to the problem. On the other hand, the solution

could very well give finite displacements everywhere! Be that as it .

may, physical intuition should be used with extreme caution.
*¥
Second, he was able to show [12] that the Fourier integral expres-

sions*"?epresmting the general solution to Navier's equations are

W Sea olSo .904\3’ T .
* ##GSee equations (52)-(54) of reference [4].
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complete and, furthermore, the 'symbolic method' used is justifiable.
In order to prove this, he used a double Fourier integral transform in
x and y and subsequently a contour integration to recover precisely
the same expressions as those reported by Folias in reference [4].

Finally, it remains to determine explicitly the stress field
ahead of the crack tip and throughout the thickness of the plate.
In reference [4], the author, by the use of analytic continuation,
attempted to 'march out' the solution from the inner to the outer
layers of the plate. Although in principle this seems feasible, in
practice it is very difficult and most of all tedious., Moreover,
questions of convergence will inevitably be raised. As a result,
in this paper we will use an alternate and more elegant approach in
order to complete the problem.

By finding the biorthogonal relation for the eigenvectors, we
will set up a double integral equation for the unknown function v ,

which, physically, represents the projection of the displacement v

onto the xz-plane. The advantages of this new approached over that
of reference [4] are:
(6] we are now seeking the solution to one equation only,
(ii) the unknown function is real and furthermore has physical
meaning,
(iii) the kernel of the integral equation is independent of the
shape of the crack®.

*In this analysis we restrict ourselves to planar and symmetric cracks
subjected to mode I loadings.




4., Formulation of the Problem.

Consider the equilibrium of a homogeneous, isotropic, elastic
plate which occupies the space |x| <=, |y|] <=, |z|] <h and
contains a plane crack in the x-z- plane (see Figure 1). The crack
faces, defined by |x| <c, y = 0* , z2<h, and the plate faces
|z] = h are free of stress and constraint. Loading is applied on the

periphery of the plate [x| , |y| » = and is given by

In the absence of body forces, the coupled differential equatioms

governing the displacement functions u, v, and w are
9 2
Ayl s 3. a)e * Vv, =0 W-@3)

where V2 is the Laplacian operator, m = 1/v , v is Poisson's ratio,

S a= % z= + =— 1C))

and the stress-displacement relations are given by Hooke's law as:

o =2 '%p%} beoer Toy " 5{%+§%} pees  (9)-(10)

with G being the shear modulus.
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As to boundary conditions, one must require that at:
+
|x] <c,y=0", |z] <h: txy-'ryz-ay-o 1)
lz| = h Py T Ty 0, " 0 (12)
ly| + « and all x : txy-ryz-o,oy-ao 13)
x| » = : ox-txy-rzx-o. 14)
It is found convenient to seek the solution to the crack plate
problem in the form
u= u(P) + u(c) etc., (15)

where the first component represents the usual "undisturbed" or
"particular'" solution of a plate without the presence of a crack. Such
a particular solution can easily be constructed and for the particular

problem at hand is

u® 2 0 @2)?x,

=
o, (m-2)
v® - - @0’y (16)

w(P) = - (m-Z)ZZI%-z

where

A= @m1)° - 3@1) + 2.
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5. Method of Solution.

The complementary solution to Navier's equations, subject to the
corresponding boundary conditions (12) and (13), is given by reference
(4] as:

(i) complementary displacements*

Ve [1ep g gy ey &N

-vjsz*svzlyl

1V e 2
- = vzl r, ',52-53— cos (B h) [ (m-2+m cos”(B h)) cos(B z) - (17)
~AZeally|
- mB 2z sm(B z2)] + Z S e n cos(anz)}sin(xs)ds

n=1

- 1 Q
)-+0{(-%1}- ?I-Pl - lqul'm_iT“ZQl) e

= -/sz*ﬂ\,zlyl (18)

+ m—}z- \zlrv . cos(8 h)((m-2 + m cosz(svh))cos(avz) -

AR

- m8 z sin(B z)] - XS /-zs—ze n cos(a,z)} cos(xs)ds
sCea

n=1
r{ -sly| , e. i OB“IYI
(m, z2Q)) e levr‘v T m cos (8 h)

-sly|

19)
2
* [(2m - 2 - m cos (th)) sin(svz) - nsz cos(sz)]} cos (xs)ds

*These complementary displacements represent a 'general enough', or
‘complete’, solution for the satisfaction of the remaining
conditions. For a discussion of this, see reference [12].

. e J B .o - l
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with corresponding stress:

(ii) complementary stresses

qz(C) o 2 ~vs *B\)IYI 2
- J‘; ) r 8, 5——57;2:;,- cos (8 h) [sin” (8 h)cos (B, 2)+B, 2 sin(8 z)] - (20)
v

va]l
+ cos(xs)ds

() o EB r -/s *Bv,)'l 5
_x_zc_ = 0{"—'2 vel v v"'wn— cos (th) [cos“ (8 vh)sin(sz)

s +8
v
(21)
-/sz+aﬁIYI

+ B,z cos(8 z)] - ngl S, ¢ sin(anz)} sin(xs)ds.

-“sz+83|y|

T z(c) 2m v e 2
=t f: (ETZ' \ozl Bvl‘v——s——— cos(th) [cos (th)sin(sz)
(22)
. e-JEZ*aiIYI
- a
+ 8,2 cos(8 2)] - ) S, sin(anz)} cos(xs)ds.
n=1 S *ay




" —ln e -

- -

i, S

= ALl ALl
e
)

- msvz sin(sz)]

-7 S se n cos (o, z)} cos(xs)ds

o 4

rr-—-_ gy - ——— ~
13
‘ a_{c)
X -
| T Py Iylsq ¢ mr 720 - gy @) &
- +8,lyl
: * BT Wi BT WCOS (th) cos (sz)
‘ \Y
, ‘ (23)
. °Z° -v’szﬂ%vz!yl
- = I e cos (8 h) [ (m-2+m cos2 B h
RACE N A SR [¢ (8,h) cos(8,2)
-vaz sin(sz)] .
© A
+ nzl Sn se B cos (cxnz)} cos (xs)ds
t
g (c) m -
i Y - E (Emr Q - 5Py - Iylsq - gy s%2hqp V!
K , = -v’sz*svzlyl
i + BT cos (B h) cos(8 z
3 mvzl Vv 5752*33 (6, (8,2)
\: (24)

cos (th) [ (m-2+m cos2 (th)) cos (sz)




) _ - -
.3 f; (a&hq, + 258, + Ly 257, + 2lylsq) e

2 @ -YS +Blel 2
=1 r e cos (B8 vh) {(m-2+m cos (th)) cos(sz) -

. (25
- vaz sm(sz)] )

o 252402 -/ zmnzlyl
+ 7S e

N cos(anz)} sin(xs)ds ,
n=1 s va 4

where the * signs refer to y >0 and y < 0 respectively and the
constants Pl » Q1 ’ I‘v and S n are to be determined from the remain-

ing boundary conditions. Moreover, = -'EI (n=1,2,3...), and By

%n
are the roots of the equation

sin(Zth) = -(Zth) . (26)

This equation has an infinite mmber of complex roots which appear in
groups of four, one in each quadrant of the complex plane and only two
of each group of four roots are relevant to the present work. These

are chosen to be the complex conjugate pairs with positive real parts.

The only real root Bv = 0 must be ignored*.

*The first few roots are tabulated in Appendix II.
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By direct substitution, it can easily be ascertained that the

above complementary displacements satisfy Navier's equations and

(c) , T () y T (c) do vanish

furthermore the corresponding stresses o, 2x vz

at the plate faces z = th .

Finally, if we consider the following two combinations to vanish ®

@ T
Vv . 2 .
r cos(th)[ sin (th) cos (B vz) + B N sm(evz)]

27)

&y
E'7\)-1

r

-72—9cos(az)+ ] — =0
n-l v-l

and

ﬂ Z r, cos(8h) [ (m-2+m cos 28 ) cos(82) - m z sin(B 2)]
v=] (28)

© Zsz+cx2 1

2 2.2 m- -
- n§1 T Sn cos(anz) “Tm S 2 Ql - ZsPl - Zle 0
n
for all |z| < h , then two of the remaining stress boundary conditions

are satisfied automatically, i.e.

x)('c) -rygc) =0 forall x, {z| <h and y=0.
We will suppress for the time being the satisfaction of the last
boundary condition and will focus our attention to the contimuity '

conditions.

As it can easily be seen, all continuity conditons are satisfied

if one considers the following two combinations to vanish

WNotice that the derivative of eq. (27) with respect to z leads to the
integrand of eq. (22).
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(29)
@
* iy ) cosB M [(mzem sin’ (8 1)cos 8,
@ T
+m8 2z sin(82)] + =% J -2} cos(xs)ds = 0 ;
v=l
|x] > ¢,V |z| <h.
and
4m m < r\) 2 2
r {- =T * o7 vzl :[ B, [ + cos (8,h)) cos(8 2)
0 =
(30)

- B2 si.n(sz)]} sin(xs)ds = 0 ; |x| >c ,v|z] <h.

which by Fourier inversion lead to:

w1 4 1 * N
B TR R - Sl = S M e CY O

and * 1

*The reader should note that eqs (31) and (32) automatically satisfy
eq. (28).
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- nf—-:ni'Ql mimf Z —% 83 cos(8 h) [(1 + cos 28 oh))cos (B 2)
v=l s
. -2 (¢ 3u _av .
- sz sm(sz)] = + ;I (ay 36 y=0 sin(sg)dg
(32)
2 [, av -
= % — L) Z(a—g-)y_o sin(sg)dg
c
; A = T4—5'-J' v(E,0,2) cos(sg)dE .
: T o
|
{ Adopting next the following definitions
. ‘ 1
z\f )(z)E(th)z[th sin(8 h) cos(82) - B,z cos(8 h) sin(8 2)] (33)

28) (2) =-(8 )18 1 sin(8,h) cos(8,2) - B,z cos(B ) sin(82)]  (34)

-2( vh) 2cos(B vh) cos (sz)

C A2
, £(1) (2) =+ Zh (%'-1-) Io {-:—32’— - xlnsz"} cos (sg)dE (35)
' Z

(3) .y = Zsh m-2, [€ L m=2 2
X £/ (2) = (-—-) J v cos(s£)dg z(n?f) th ’ (36)
.’;
‘ equation (32) and the second derivative of equation (31) with respect
) to 2z become
o m 5 fv.,(3) _2sh? '

; - a7 vgl L @ = , V(6,02 cos(sh)de (37) .
i
o 2m 2

* T Qh
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and ®
-1, ¢ v (3)
B %) 21 < 2,7 @ + 2,7 ()} =
vel s
2 2
. 2h v _ .2
= % Y 0 {;-z-z- s“v} =0 cos(sg)dg (38)

+ 285p o’

respectively, which upon simplifying one has

2 &y D] [P -
vel s% 2 ) £ 2y

Next, following reference [13], we can construct the biorthognal

relations

W (2) = - 822 cos(8#h) sin(8%z) + g% sin(8%h) cos(8¥2) (40)
and

W (2) = - g2z cos (8*h) sin(g*z) + [8%h sin(8*h) (41)

- 2 cos (B;h)] cos(B3z) ,

where 83 stands for the complex conjugate of the g, roots. The
orthogonality condition now reads "

*Notice that the continuity conditions are to be satisfied in the
interior of the plate only.
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W
© T h 2" (n)
I P H_h[w;(‘” m @1 [§ 2] [ v :ldn

vel s Zv(s) (m)
(42)
&)
h £
_1 *(4) *(2) 1 2
R I-h[wk (n) wk ()} [0 _1] [ f(3) m }dﬂ ’
or
T, 1 (R ) W *(4) *(2)
P & [_h{w\, m £+ 2@ - WD)
(43)
. f(s) (n) }dn
where for simplicity we have defined
h
& =5 RECAOREAORY IR ORE ARIC)
(44)

. 23
AN L) Yn .

Finally, in view of equations (33)-(36), (40)-(41) and (43)-(44),

one finds after some simple calculations that

X, = -4 B costeh) (45)
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h .
("Z) ;,g; (Eq-) j I hV(E.O,n) cos (s&)
+ {(hs)?[8 1 sin(8 h) cos(8n) - Bn cos(B h) sin(8 n)
+ 2 @1
() cos(B h) cos(8 n)] (46)
+ (8,)%[8 h sin(8 h) cos(8,1) - B.n cos(8.h) sin(8 n)
+ 2 cos(th) cos(an)]} dn dg .
Similarly, from equations (27) and (32), we find that

h
ﬁL,(a SR S|, yEomesen cosem w e )

and

h
o -+l -@,{‘lf: [, v&0m cos(st) an a5 . (47b)

Returning now to the last boundary condition, we require that*

*Where we have made use of eq. (28).
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@ ® I' BZ
j {-0Q +-= 7 “7ﬁs cos(B. h)[(1 + cosz(B h)) cos(B, z)
0 1 mval ? s"+g v v .V
- sz sin(sz)]
+ —];2' E E\f’ [ 53 - s2 ] cos(B.h)[m-2 +m cosz(B h)) cos(B.z)
AN !+Bv v v v )

-m sz sin(sz)]

2.2 2
® S s(s“+a’) a
- Vo 'f'r%'- (s® + -B] cos(a z)}
nzl /szmnz [ s z *n

1 lof
cos(xs) ds = -%; fz] <h, x| <c

which, upon using the relations (46)-(47) and interchanging the order
of integration, can also be written in the form of a double integral

equation i.e.,

b 2
r'rlh'vzl J 1 {x v(&,0,n} 3,3?5*2-H1[lx-5|;n.21 dndg
crac
faces
1 v az
v 1] L (¢ v(E,0,m)} 52z HylIx-El3n,2] dndg
crac
faces (49)
'
1 n+1 32 z
TR {+ v(gsoin)}(m) %52 [ﬁ] dndg .
crac
faces

z) <h, |x| <c.

_GO.I
m’
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where

2
BN

H [ x-gl sn,2] =fp - [cos(8h) sin(82)
eV

+

B8 vh sin(th) sin(sz) + sz cos (B \)h) cos (B vz)] .

. {Bv!n;:sl K; [8,|x-£] ] [B h sin(B h) cos(Bn) - Bn cos(B h) sin(Bn)

+

2 (“‘;Tl) cos (th) cos (an)]

+

xX-
&2 [ Kyl Il 1 ox' « 8 sin(a ) cos(8 )
0

BN cos(evh) sin(an) + 2 cos(th) cos (8 vn)]}

(50)
+ aor BI,'iK', (%2 cos(8_h) sin(B,2) + Bh sin(B h)
82n?
sin(g z) + B,z cos(B h) cos(8 2)] * {[ - ;‘_’—5-1(0 [8,1x-€| ]

2
28 h
3 R
- BVhZ%Kl[BvIX'EI] - -(;a-l%;_—grkl (3\,|X'E|)

2
+ - -ze-h;;] « [B,h sin(B h) cos(Bn) - B n cos(8 h) sin(8n)

+ z(%) cos(B h) cos(8 n)] + [B\S,h”(’;—;%ﬁ[ﬁle-ill

2,2
B h

- x—.g] [8,h sin(8 h) cos(8n) - 8n cos(B h) sin(B n) + 2 cos(B h) cos(B,n)]}

and
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1
EARUDN = 2
Hz [ lx EI n,z] ;-S
n
afl Zan
{ -k [oplx-gl 1 - =T & [o x-E] ] (51)
2
+ ———-32 - *hn } cos(e_n) sin(a_z)
x-g)° D) n n

Finally, integrating once with i‘espect to x and z one finds*

~

;15 ) I l{t v(g,0,n} H, [|x-£[;n,2] dndg
v=l crac
faces

* 7,1}; ! J L {£ v(g,0,n)} Hy[|x-E|3n,z] dndg

n=1 Crac
faces (52)
1 _ m+l z
& L{: v(g, 0, G 2] dnde
crac
faces

%0
=- (@ xz; x| <c, [z] <h.

We have reduced, therefore, the problem to that of the solution of a
two-dimensional singular integral equation for the unknown function
v(£,0,n). This solutiom will be discussed in a subsequent paper.

It is interesting to note that equation (49) is also applicable to
planar cracks of arbitrary shape that lie on the x-z-plane and are

symmetric with respect to both x and 2z -axes**,

*The reader should notice that the function v(£,0,n) has a + sign also.
**The same method of solution may also be used in order to derive a much
more general integral equation which applies to any arbitrary crack shape
or void. This matter is currently under investigation and the results will
be reported in another paper.
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Perhaps it is instructive to point out some of the

advantages of the present formulation over that of reference [4]. These

are:

(1)
(i1)

(iii)

(iv)

we are seeking the solution of one integral equation
the unknown function is real and has physical meaning
the unknown function can be related directly to experi-
mental observations

the formnulation applies to a large class of planar

crack problems




6. Solution to Navier's equations.

Without going into the mathematical details, we may now write
the displacement functions u(c) ’ v(©) and w(c) in terms of the

unknown function v (§,0,n) , for |[x| <c:

W@ . Ll ] f}_’h v(E,0,n)( %rmﬂ (:; o = [(x_; *-"'."
h &2 aaxz o AL
= ] [hh v(E0m) - Man g3
ARRE fc ﬁ, vEomt %(ZEL)ZHYIZ VE [(::) *Iyll !
T1: SEEES 5%27 rer L
C o (s4)

h
- ;15]: [, veom - & & e

h
+ iIH fc I-h V(E.Om) ‘g';“ dn d£
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h ]
W s %[h r_cvce.o,n) . -i— 2 X8 g an

(x-£) “+|yl

(55)

|
| 1 [ L IRPVRY
E 4 ;Hj_h ﬁc V(E,o,l'l) 3z (M"‘M) dg dn ,

where for simplicity we have adopted the following definitions:

5 Kolen/ee®) Z1y1%)
Z

. n=
‘ 1 o,

: 56
cosa z cosa n . (56)

«
, M= h—’fr ) ;11{’- { (“-%g- + coszsvh) cos8 h cosd z

2
- B,z cos8 h sing z} { - ;'ax? KOIS'\,'J(x-e) 2+lylz . '
(57)

J [th sins'“h costn - an costh sinsvn+ 2 (’-"%'-‘-) cos8 vh cosavn]

.2 .
+ 82 x 18 Yox-) %1yl 7] [ 8, sing b cosB.n - B cosg h sing n +

+ 2 cosB h coss‘;n]}




M

4 I-KcosshcosBZf-—?K[B J( -E) +[y[“] "
v= .

* [B,h sin8 h cos3 n - B )n co;B op sind.n + 2(%) cosg_h cos n ]
(58) .

\IO\)

» 82 K18, /8% ]y17) + [ Bh'sing b cosB n - Bn costh sing

+ 2 costh cossvn]} .

In view of the above, it appears that the solution may not be
separable either in cylindrical or spherical coordinates.
Finally, one may express the total strain energy stored in the
system to be:
i h [~ 4

1 S
R W= - {(v -v)o,} dxdz . (59)
. ‘ z '[-h J-'c Y y=0

-
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7. Discussion

Although we have put forth a considerable amount of effort to solve
the double singular integral equation, we have not as yet been successful
in recovering, explicitly, the unknown displacement function v (x, o, z),
valid throughout the thickness of the plate. This is an extremely difficult
problem where physical intuition can be misleading.

At present we have developed two methods which in principle should
give us the desired solution. Unfortunately, in order to recover the
corner singularity, one is forced to sum up, analytically, a double series
of complex eipenfunctions. This is a task of monumental difficulty, for
the algebra is tedious and long.




9.

10.

11.

12.

13.
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APPENDIX I.

To find the complete homogeneous solution of equation (82) of
reference [4], we proceed as follows.
Assume first a solution of the form

2-2/m

£ (14g) = @1-7) G@) ,

where G(z) 1is an arbitrary function of ¢ . Next, substitute into

homogeneous difference-differential equation to find

-0 e + @) Meen =0,
from which one may now deduce that:
o c -
6@ = [ oy | @0’ @ g

n=0 0
. or

o C2n+2 2
:-. G(g) = nZO Anel TR oF (=3+%,2n+2;2n43;-7)
! ﬁ
‘
')
A .
4
‘.
b ]
7

i ——
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APPENDIX II

The roots of the equation sin(Zth) - - (Zth).

The equation has an infinite mumber of complex roots which appear
in groups of four. However, as it was pointed out in the text, for
this analysis only the roots with positive real parts are pertinent
and furthermore, the only real root B, = 0 must be discarded. Thus,
if we define the roots 82,84,86,... to be the complex conjugates of

the roots 81,83,85,..., then by setting

Zth =X, * iyv v =1,3,5...

and using a Newtom-Rampson mumerical method one finds

v X\) )’v

1| 4.21239 | 2.25073

3 | 10.71254 | 3.10315

5 | 17.07337 | 3.55109
' 7 | 23.39836 | 3.85881
' etc.

-

Furthermore, the asymptotic behavior of the roots for large v, i.e.,

-

for v = 15,17,19,..., is given by the following simple relations

e

X, =(v+ %-)17

- -

N y,, = cos Rl + %—)n] .

2 ¢

]
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Figure 1. Geometrical representation of an infinite cracked plate
with thickness 2h and crack length 2c .




PART II

PARTIAL THROUGH CRACK IN A PLATE

OF FINITE THICKNEXX




u, V, W

L (©

W®

x’ y’ z

NOTATION

R
2t 3

ox dy

R

ox
9

dy

92 52 52
R Y]
ax y 9z

Yc.ing's modulus
—E _
2(1+v)

thickness of the plate
1

v

van

Fourier transofrm parameter
displacement functions

displacement functions due to the comple~
mentary problem

displacement functions due to the particu-
lar problems

rectangular cortesian coordinates
at/h n=1, 2, 3, **°*

roots of the eq. sin (B h) = (th)
roots of the eq. sin (Yvh) - -(Yvh)

coefficients as defined in text

3u_ v 3w
ax  dy oz

Poisson's ratio

B i e




Op? oy, O,» Txy’ Tez? Tyz = stress components
¢y L) _() () _() (@€ _ -
Op s cy » 9 s axy s g cyz stress components due to the comple:

mentary solution

5@, o®, o ® B @

v 2 xv * %%z * %z = stress components due to the particular

solution

5; = uniform applied stress




I. INTRODUCTION

One of the problems in fracture mechanics which apparently has not
received extensive theoretical treatment is that concerning the effect of
a partial through crack upon the stress distribution in a plate of finite
thickness. This lack of iﬁterest is primarily due to the fact that three
dimensional problems present mathematical complexities which are substan-
tially greater than those associated with plane stress or plane strain.
However, it is now possible* to study this complex phenomenon which has

defied researchers for some time.

II. FORMULATION OF THE PROBLEM

Consider the equilibrium of a homogeneous, isotropic, elastic plate
which occupies the space le <o |y| <o 0 <-z < h and contains
a plane crack in the xz-plane. The crack is elliptical in shape and is
defined by the inequality

By + (5t W

The plate faces z=0 and z=h are free of stress and constraint. Load-
ing 1s applied by the periphery of the plate |x| , |y| + ® and is given
by

-. o, =T

; x =T,,=0,0

xy y y

) In the absence of body forces, the coupled differential equations

= co .

) governing the displacement functions u , v and w are:

).

*See references (1,2
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2
where

pede, v, 2 (5)

and the stress-displacement relations are given by Hook's law as:
op = 26 {28 + 2oy 6)
oy = 26 (& + 25} %)
o, = 26 {32 + 2} (8
Ty = G {52+ &) ©)
Tye = C {32+ 323 (10)
Tz = 6 {4+ 2 an

As to boundary conditions, one must require that at:

z=0 : Tez ™ Tyz =0,=0 (12)
z=h : sz'Tyz'cz'o (13)
@+ A<, y=0f i =T =0 =0 (14)
|y] +~ and all x DTy " Tyz =0, Oy =T, (15)
x| + = PO R T = Ty = 0 (16)

It 1s found convenient to seek

lem in the form

the solution to the crack plate prob~

us= u(P) + u(c) etc., (17)
where the first component represents the usual "undisturbed" or "particular" .
gsolution of a plate without the presence of a crack. Such a particular *

solution can be easily constructed and for the particular problem at hand is

W®

[+
-
264

(m-2)2%x

(18)
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i i

o

v

. L
3
v® -y DR, (19)
w® « - (m-2)? (-2%95) z (20)
A= (@1) -3 @1) +2 (21)

MATHEMATICAL STATEMENT OF THE COMPLEMENTARY PROBLEM

In view of the particular solution, we need to find three functions
u(C) (x,¥,2) v(© (x,y,2z) and w(c) (x,¥,2) , such that they satisfy simul-
taneously the partial differential eqﬁations {2) - (4) and the following

boundary conditions:

at () + ()2 <1, Jy| = O‘Txy(C) -t © .o, °y(c) ~-5, (2

yz
at z=0 R A TAEY (23)
at z=h Ty O w1y, =0, @ -0 (24)
at Vxl+y? -+ o :“(C) s v(c) and w(c) are to be bounded. (25)

METHOD OF SOLUTION

In constructing a solution to the system (2) - (4) we use the method
described in reference [1] to recover the following ordinary differential

equation of the independent variable 2z :

2_(C) ©)

212 | ot 2 590 ¢ (Zr v e 2@ o an
32v®) c c aw'©
d—,‘!'—+<°’+ﬁiai)v()+<;."*53:3z>“”+<£732’£— =0  @n

m-2, d2w© m au® m dv(® 2_(C)
(E-2) @&t EE W e 3) gz — v =0 (28)

where the symbols of differentiation 31 ’ 32 , D are to be interpreted as

numbers.
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Upon integrating the above system subject to the initial conditions*,

© (©)
R T
()
-gw—--wl , for z=0 ,
z 0
one has after a few simple calculations**
() m -2 sin(zD) __.m
u el o 1) D 3 Vo~ Tm-1) z cos (zD) alwo
+ cos(zD) uo-Z(mni 3 zsit;)(zD) 3.6
©) m~2 sin(zD) m
v -- @1 > azwo - Tm-D) z cos (zD)9d A
+ cos (zD) Vo~ 2(mm- 7)) zsit;)(zD) 9,0
«© . cos(zD) w, + T(EE-T) Dz sin (zD) w,
- miz sin(zD) 9 +2(m o)) [sin(zD) - zcos (zD)] 8,
where
8

Finally, in order to satisfy the boundary conditions (24 we require that

[phD sin (hD)BIJ uy+ [mhDI,sin(hD)] v, -mD [ sin(hD) - hD cos (hD)Jw, =0

(242D). (32 (m-1)D?) - mh cos (kD)3 u, + [-SBD) 5 5

-mhcos(hD)B‘Bz] v, + [mh'c)1 D sin (hD)] w, = 0

*uy , v, , Wy , U , Vy , W, are arbitrary functions of x and y

#**Note that in equations (30) = (32) we have let

u--aw

0 10

v--aw

0 20
1

wo.-m-zeo

in order to simultaneously satisfy the boundary condition (23).

(29)

(30)

(31)

(32)

(33)

34)

(35)




5
-[=mh cos (hD)3,3, + ﬂn@l 3,3,Ju, - [mhcos (hD) 324.'_1“1)(2’1 3:
(36)
+ (m-1) sin (hD) D] vo+ [msin (hD) D 3,] w, =0
or |
d), d,, d,, Uy 0
d;y, dy, dyy Vel = | O (37
dy; dy, dy, Vo 0
vhere the differential operators dy, are defined as
- = wh 3, D sin (hD)
dlz - mhazDsin (hD) (38)

dy; = = mD [sin(hD) - hD cos (hD)]

d,; =2 [sin(tD) (32-mD?) -mhD 32 cos (kD) ]

d,, ==3 [ sin(hD) +mhD cos (hD)] 9,3,

= mh 3, D sin(hD)

= - [s1n (kD) +mhD cos (kD)] £ 3,2,

d,, =-3 [ sia(tD) (aD? - 32) +mh 32D cos (kD))
d -mhazD sin(hD) .

Keeping in mind that the differential operators 9, » 3, » p? obey the
same formal rules of addition and multiplication as numbers, the solution of
system (37) 1is given by
U, = X, (x,y)

v, = X, (x¥) (39
W, = x;(an)

where the unknown displacement functions X; » X, » Xy satisfy the differ-

ential relations

Qx, = 0 1=1,2,3 (40)




with

dll 12 13

(-9

21 d22 23

(-9

We construct next the following integral representations for up

and w

0 which have the proper behavior at infinity

o - T ATy
sy Gy =72, + lyley I+ R /aT48Z |yl
w
+ I
V=1 n=1

vo(,y®) = 3T (@, + |y]Q,) SRS ICR
VE1 V=1

+7] Séz) e’ z"'mxzzhl}cos(xs)ds

n=1

£y o ® -s|y|
wo(x,y%) = [ @, +lyle) e + \21 R, £

+ ) Sé’)e-'s'mn ly'h:os(xs)ds

n=1

The * signs refer to y >0 and y < 0 respectively,

and B

\ Y\) are the roots of the equations

sin(th) = (th)

sin(y,h) =-(y h) .

The equations have an infinite number of complex roots which appear in groups

of four, one in each quadrant of the complex plane and only two of each
group of four roots are relevant to the present work. These are chosen

be the complex conjugate pairs with positive real parts. The only real

roots Bv -Y, " 0

must be ignored.

= n?(m-1) D?sin(hD) {h%D? - sin?(hD)}

R(D '8 ""Y\,Vl}’l + 7 Sé‘) e Y8™+on ly| }sin(xs)ds

AT o) AT

T ) ~/eTElly| E 'ﬁ'\g’)e"/szﬂf,"ﬂ

a =5 (@=1,2,3,*")

(41)

v
0

(42)

(43)

(44)

(43)
(46)

to *
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Finally, an examination of the solution shows that the unknown
functions P , Q , R etc., are not all independent. Assuming, there-
fore, that one can differentiate under the integral sign and inserting
equations (42)-(44) into (37) one finds

Q, = -Q,
(1+m) s (P, +P,) +(3m~1) Q, +2smh Q, = O

(1) (1 - cos(Bb))
e e

\Y)
/82+62

h&()z) - —g'\z’—\,' (l-co(th)ﬂv

%(3) - R\’

'\1(1) - 8 N
th 75(1+cos Y\’h R\)

VS!+Y!
h'l‘i'\()z) = —Y-\z)—\’- (1+coszh) R\)

'\4(3) - n
RV R\)

s( =0
a

82+
n

) --
s!(lx 8 n

s(2) = g
o n

In order to facilitate our subsequent discussion it is found convenient at
this stage to summarize our results:

(1) complementary displacements*:

o L 3m-2 -
u( ) ..ro {[Pl"‘sz Pa+.2_.(%:_1—)- 228Q1+2(n:.1) zzsz(Pl +Pz)+ Ilell‘ slyl

47)
(48)

49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

*It can be shown, that in order to satisfy the remaining boundary conditions

Q3 must vanish. This information is used when writing the complementary
displacements and stresses.




8
bad 1=~ cosB h
- J an\,{(—sqi—)[cuﬁ z- Z(m-l) B zsinsz]
ve=l
'2(.:_21) [s!n@ z)l'm_z B,z cos@® z)]} 8 E\)"'
(1+cosz h)y a
- vgx 'ﬁ'\, —'—Y'r,;—— [cos 2~ a1y Yv? 5ine 2]
22:_21) Y [ singy #-PNTZ Y Z cos(Y, 3]} e~ s+, Iyl
®  /gi4a? sy
- ZI s LS COG(G z)ke Iy' } sin(xs)ds
n-

v(c) - :FI: {[P2 sz P - % z Q1 ?(:—éls. zzsz(l’l +B,) - IY[Qll e",?‘

+ Zs o8l z)e © “a |yl
n=)
(l-cos(B h))
+ Z l\, »/s!+B2 -—B;h—[coqﬂvq 2(m-1) B, z s81n(B z)]

A IVY)
4~ [sinB z+m_ B z cos B z]} e '8 +B\)|YI

(1heos(y, 'n))

+vz;x R’ Val+y 5 _W— f““%“"‘m:_l) Y2 siandl

|/ 2
PT o] =2 2 cosy\,z)]}e' sz"'Y\,|}'|} cos(xs)ds .

w© -_]':' {[P3 -m_il sz (P, +1=2)-m+1 zQ,] el

o (1-cos (th))

m=2
+ \Zx Rv{ Bn [2(|n-1) sin(B z)-z( ) B,z codB z )]

-/a’+8l|y|

+eos (B9 +2—(-|:—1) B,z 8in@ 2 le

&v ‘ (l4cos (Yvh»

Y h [;(-mz_l) sin(r, 3 2(m-1) Y,,2 cos(t, 2)]

- -]
+ 1
=1

+cos (. z)+7—3- Y,z siafy, e |Y| } cos(xs)ds ,

(58)

(59)

(60)
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(e), = o2 -sly| n-2 b
o J‘» -2 (nﬂ-l)qx e

- B\,h sin@ 2 ,"‘2+B\2)'Y,

= K

+ m=2
L SRV

(11) complementary stresses:

.

-

T [(1+cosy ) cosly, -y hsin(y ] e

[ (1+cogy ) v,z sinfy,

h R, [ (1-cosd W) cos(8 z)

z) Y b sinly, z)

. sz-!-'yvly[ } cos(sx)ds .

+ Yvh Y2 cos(sz)] e

T cosdf h)
Z - f -2 Z R /s 24p2 [——-——"— (s1n@ 2)+ B, z cos(B )
- sz sin(sz)] e sz+8\2)[y]
(62)
L (1+cod¥ h)
o Z R, /a2 v 5 (sirfy A+v,z cosly, D
-vY,2 sin(sz)] e szﬂ\z)‘yl -7 s, @ sinfa z)e s?+aq|y| } cos(xs)ds
ns n n
sz(C) © . m (- coiﬁvﬂ) ‘ -v/s-E:B—z-l |
7 -J'o {m-_l vz; s Rv[_—B_vT—— (sinB 2)+ B,z cos(8 3) - Bz sin(BVz)]e Y4
© (1 + cosfy_h) [ 2.2
+ ;mf \,21 ° %I\’ [_WY— (sh{yvz)i- Y\2 cosly,2) =Yz sinly, 2] © +YV|Y|
© Jal+aZ vy (63)
+ 21 . L @ S sido z)e |Y| } sin(xs)ds .
n-
09 e a TR
% - Io {3 D \;Zl o [Q-cosB ) Bz sin(g 2)- B,h sin(B\’z)
+Bh Bz cos(B\,z)] e vIYI
(64)
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+ —————— .

10
g (© . 22s%q
26 -Io {[spz_ s’z P, - =1 - slvl +( )Q] -yl -
© R Tl
1 Yalep?
+ = vzx T" [(1-cosB 1) cosB 2)- 8 bsin(B 2] e s*+80ly|

® - (1~ coqB )
+ \,Z; R, (s +B\)) ——— [cos(B 2~ 2(m_1) sz siﬂ(B 2}
- Bl £ Ceine gy 8,z corls z)] el
] (65)
— Vata?
+ nzx s +an Sn cos(anz)e s n'yl
_1' ® ?\, -v’sz*'Yzl |
t o1 VZI Y [(1+coiY\ﬁ) coina-Yvh sin(Yvél ¢ i
o (1+CO‘Y h)
* LK ’*Yf»’[—‘?n— [ coslr, )ty Yor otalry)

2“(lm-1) Yy [sin(y z)+ 7Y ZCOS(YVZ)]:I e WVIYI}'cos(xs)ds .

(c)
-3 j‘o {ls(P, -P,) + 252z P, +;+2—1- zzszQx+2|y[sQl-Qx]e-s|YI

oly™

® (1 - coslg h)
- vzx s/sz+8\2) R [—-—BT—*(Z cos(B 2)- m—l B,z sin(B #)

2 1 —/alep2
- ?—T B (sin(8v1)+ﬁ B,z cos(sz)] P +Bvlyl 6)
(1 +cogy, i)

- \; s/s +’Y\2, ¥ v [_7-11—— ¢ cos(sz)-ﬁl- Y2 s:ln(sz)

e 'Y (sinfy, z)+-——'¥ zcos(Y Hle |YI

® (282 +a?) T
- nzl —- s, cosla z) e " 0171} stacxerds




(c)
-2—;- -j' {[sP, +s%zp +n}-1 2?s%Q, +y sQ, ] e-s|YI
® (1 - cos8 1)
vzx s2R [—_B-‘T— [ cosB 2)- Tm 1) B,z sin(B 2]

2(m—1) B [s'in(ﬁ z)+——- B z cos(B

zn] T

ZP\’

V=1

[(1~ cos(B h)) co(B z)- B hsin(B 2] e 32+B\2)'YI

m—l

(1+costy, h)
- Zl 2% l: :°h v [cos(Y Z)- 2(m 1y Vv? sin(Y z)]
v

(2.2
_.m-2 Y—];)- [sit(yvz)+-£—2 Y2 cos(sz)] e '8 ""Y\,IYI

T R [a24n?
= Tv [(1+ coaly W) cos(y, 2}~ v,h sin{y, 2] &™"° samibd

- Z Vs? +01. Sy co{a z)e— IYl } cos(xs)ds.
1

ns

By direct substitution, it can easily be ascertained that the above

complementary displacements satisfy Navier's equations and furthermore the
(c) L) (c)
’ z

corresponding stresses O » T
z zx y

z= 0 and z=h .,

Moreover, to satisfy the ccmtiruity corditions, one must require

that:

do vanish at the plate faces

(67)




Sm-2 2 . m 22
f:{ [Py =82 By =~ Ty 2 %% ~ T@D 2 8 By * Bl

+ Zs cos(a z)

n=1

/r———- (l-COS(B h))
+ E R, Ys'+ ————— [cos(B 2) - 2( Dy By? sin(B z)]

V=1 8%n

v
m-2 4
= 3@1) B B [sin(B 2) +—— B,z cos(B z)1} (68)

® ~ 53— (l+cos(y h))
+ IR sy — v

v=1 ¥ v Y\z)h

m=2

= 2(@-1) 'Y [sin(y 2) + =5 m-2 Y2 cos(Y\,z)]}} cos(xs)ds

~N

‘V(c) (x,0,2) ;

nNIN

(=]
-e
Pl

+

12

[cos(y 2) - 5(_1:::1_)' Y,z sin(y,z)]

w IN
[ ')
[

N'N

ol
v
[
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f:’{[sP + 822 P, + 2%:_1) 232Q * 30y 2 2, (1> +7,)

1- cosB h
- Z Vs248? o R\){( -z Yy [cos(B z) - Z(m-l) B,z sin(B 2)]
V=] v
m-2 1 m ‘
- Tl B [sin(sz) +;2- sz cos(sz)]}
v

(69)

g ~ {(1l+cos(y h))
- 2 ¢s§+ z s Rv{__—z__v_- [cos (sz) 2( Y] Y z sin(Y z)]

V=l Yvh
2(;-:) Y, [sin(y,2) + =5 v,z cos(y, z)]}
© 92+0.2

-1

=1

sin(xs)ds

n
Sucos (anz)

—
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f: {["Ps - Tn%'f sz (B; +B)) - ﬁ s2q; ]

@ (1-cos(B h))
/2,2 v m-2
+ vzl s™+p, N{ th [Z(m-l) sin(sz) 2( 1) B z cos(B z)]

+ cos(sz) + — T 1) 8 z sin(B 2)} (70)
Vo v (1+cos (Y\)h) ) o2
Ly +t§ Rv{ Yvh [Z(m-l) sin(yvz) E?;:IY Y2 cos(Y z)]

+ cos(sz) + — T 1) Y z sin(y z)}} cos(xs)ds =

(c) 2 2
oL N S 2
tGy gm0 3 3t 7< 1

2 g2
0 ’ "'E"'_z')l
[ o4 a

Thus, by Fourier inversion, one has:




r'** —'l"'l:* ' - T —— i —— 1
. R e AN -«

3m-2 _m
2 " 823 = Ty ¢ sQl (1)

22
[p z's (Pl + PZ)]

+ ] s, cos(a 22

n=1
(l-cos(B h))
+ /s + —————— [cos(Bz) - 8 z sin(B z)]
\21 R, th 2(m—l) v v
o=2_ [sin(B z) + == B z cos(B z)]} (71)

T 2(m-1) B

(1+c08(Y h))
+ z R v's + —-———— [cos(Y z) - #—1)- Y2 sin sz)]

va]l Yzh

- Z(E_i) Yl [sin(Y z) +— 2 Y2 cos(Y z)]} =

-2 Sc (c)
-+ fo v~/ (£,0,2) cos(sE)dE




) . . .\_A .-...4'.\. '-’!
16
@,
2
[sp, + 6%z By + T2, zsaw",_;_,) . #%s? (P.-r”;)] +

© 1-cosB_h
7.1“82+8\2, s R, {(—#) [cos(B 2) - 2(m—1)8 z sin(B ;2)]
Vs

\Y

m-2

1 - |
- Tl E\: [s:ln(sz) + == sz cos(sz)]} .

© ~ (l+cos(y_h)) :
- ] el s R,F——5—— [cos(y2) - 3(—:_—1)1\,2 sin(y, z)]

\Y 2
v=] Yvh

_2(;‘:) Yl [sin(y z) + 7 Yy? cos(YvZ)]] (72)

g 82-!-0.2

n
Sn cos (o.nz)

(c)
c -"“—-—)y_o sin(sE)dE

3E )y_0 sin(sE)dE

S .
— 28 (c)
= -‘"— J’Dc v ¢ (E,O,Z) COS(SE)dE
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1 2 1
[sP3 w182 (P1 + Pz) e 3 szQI]

l-cos(B h))
/2 ! v m=2
+ vzl th [z(m_l)sin(sz) Z(m ) vz coa(B z)]
+ cos(B z) + o Z(m-l) sz sin(sz)}
(73)
® ~ (1+cos(Y\’h)) o2 o
+ 21 sHy, R, { Th [2(m-1) sin(y z) - T W2 cos(y,,z)]
V= v
+ cos(y,z) +'5?£:TTYVZ sin(yvz)} -
- S (c)
- +‘% Ioc (g; )y-O cos(sE)dE
S (e)
= i',z; foc (g: )y,_o cos(sg)dE

where for simplicity we have defined Sc = ¢Vl - 33 and in equations (72)
a

and (73) we have made use of the remaining two boundary conditions:

) az(®) Lg  ary=o
xy " zy

The reader should notice that by adding eqs. (71) and (72) ome

concludes that

© S
Z 8 Sn cos(anz) -+ %? foc'vic)(E,O,z) cos (sE)dE
nwl (74)

7




-

Shas Vg

A

18
from which#,
ss =720 j V(E,0,n) cos(sf) as (o n)dEdn (75a)
and
—8s ra ¢ (c)
sS,=-28 (B + P+ [ [ SV 0m -
(75b)

* cos(sf) dEdE.

Finally, we would like to solve for the unknowm coefficients Rv
and Rv . To a ccomplish this, we proceed as follows. Using eq. (74) into

(71) and, upon differentiating w.r.t. 2z once, one has

- sP3 - 3m—i sz1 - ;?I zs2 (Pl + Pz)
(1 cos(B h))
/2 3m-2
+ vzl R Vs +B [ - Z(o-1) sin(sz) e l)B 2 cos(B z)]
+ [ - cos(B2) +—(——78vz sin(8 2)1}
(76)
I (1+°°3(Yvh)) 3m-2 n
+ v§1 R Vs 4y Yoh - 2Dy S (V2) - STy cos(v,2)]

+[ - cos(sz) + ETE:IT Y2 sin(sz)]}

©
-+ & I © &) _gcona)ak .

* Notice that Sc is a function of n now.




Utilizing, next, the orthogonality condition*, it is possible to determine

~ (c)

the coefficients Rv and Rv in terms of the function (g: )y-O .

Thus

a ¢ c 3v( c)

R, =/, ,f° G ymo B(B,h:8,0) cos(sE)dE an

and
(C) ~
= faf g: ) gmo BOY oY) cos(sE)dE (78)

Finally, inserting into equation (65) one reduces the problem to

that of the solution of a double singular integral equation**, {.e.

av(c)
{f Gn) ymo BIx - £38,,7,,32,n]dEdn
crack (79)
faces
2 2
o . x_ Lz
-2t 2tz
[ a

where the kernel H consists of the sum of three infinite series of
the type found in the through-the-thickness crack.
The explicit solution of this double singular integral equation,
will determine the displacement and stress fields. Unfortunately,
| we have not been successful in extracting the solution to the equation
explicitly. It appears, however, that the solution is not separable

either in spherical or cylindrical coordinates. '

* See reference [2].
M ** Eq. (79) may be integrated to give another singular integral eq. with

: v(c)(E,O.n) as the unknown.

N o
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PART 111

UNIQUENESS THEOREMS FOR DISPLACEMENT FIELDS WITH LOCALLY
FINITE ENERGY IN LINEAR ELASTOSTATICS
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INTRODUCTION

The Classical Theory of Linear Elastostatics. The fundamental
problem of linear elastostatics is to determine the equilibrium displace-
ment field that is produced in an elastic body of known shape and
composition by the action of known body forces and surface tractions or
éisplaceménts. In the classical formulation of the theory the disp;acee
ments and stresses are required éo be differentiable and satisfy the
differential equations of équilibrium in the interior of the body and to
be continuous and satisfy the prescribed surface traction or displacement
conditions on the boundary. -This boundary value problem has a history
that begins with A. L. Cauchy's discovery of the equilibrium equations
in 1822; see reference [18, p. 8]. The uniqueness of classical solutions
for bounded bodies with smooth surfaces was proved by G. Kirchhoff in
1859 [12]. General existence theorems for classical solutions were first
proved during the period 1906-1908 by integral equation methods. The
principal contributors were I. Fredholm [6], G. Lauricella [17],

' R. Marcolongo [19}, A. Korn [15, 16] and T. Boggip [2, 3). More recently

N G. Fichera has proved the existence of classical solutions in bounded
) bodies with smooth boundaries by the methods of modern functional analy-
) sis [4, 5]. Thus the theory of the classical boundary value problems of

linear elastostatics is essentially complete.

!
|
.
4 . : The Need for a More General Theory. Unfortunately the classical .

theory described above provides an inadequate foundation for the analysis
" of most of the problems studied by applied scientists in their applica-

) tions of linear elastostatics. Examination of any of the numerous books

v 1




on theoretical elasticity, Beginnins with the classical treatise of

A. E. H. Love [18], reveals that most of the problems treated in them
involve unbounded bodies, such as infinite plates or bars, apd/or bodies
having sharp edges or corners. Hogeover, the stress fields are known to
have singularities at re-entrant edges and corners. Examples of these
difficﬁlties can be found in the theory of cracks; see I. N. Sneddon and
M. iowengrub [22]. It is sometimes argued that the classical theory is
a sufficient foundation for applications because real bodies are always
bounded and boundaries with sharp edges and cornmers can be approximated
by smooth ones. However, although this procedure simplifies the problems
from the viewpoint of the classical theory, it makes theﬁ inaccessible
to techniques such as separation of variables and integral transform
methods that are used by applied scientiests. Thus the real issue is
whether a mathematical théoty can be devised that is sufficiently general

to provide a foundation for the analysis of the singular problems that

" are actually studied by applied scientists. The purpose of this paper

is to provide the béginnings of such a theory comprising a formulation of
the elastostatic boundary value problems that is applicable to bodies of
arbitrary shape and corresponding uniqueness theorems.

Remarks on the Formulation of Boundary Value Problems. A

"formulation" of a boundary value problem is a definitifon of the class of
functions in which solutions are to be sought. The classical formulation
of the elastostatic boundary value problem was described above. Many
other formulations are possible. For example, the continuity conditions
may be replaced at some or all boundary points by boundedness or- inte-
grability conditions, the equilibrium equations may be required to hold

in a weak sense, etc. In principle, any formulation is acceptable if




there is an existence theorem, stating that there is at least one solu-

tion in the class, and a uniqueness theore:i, stating that there is at

most one solution in the class. In practice the choice of a solution

i class turns on technical considerations. The proof of an existence
theorem is facilitated by choosing a large solution class but uniqueness
is lost if the class is too large. The proof of a uniqueness theorem is
facilitated by choosing a small solution class but existence is lost if
the class is too small. For example, Kirchhoff's theorem on the unique-

ness of classical solutions of the elastostatic boundary value problem

can be proved for bodies having re-entrant sharp edges but in this case

no classical solution exists.

The Role of Existence and Uniqueness Theorems. A pure existence

theorem for a boundary value problem demonstrates that the properties
chosen to define the solution class are not contradictory; i.e., there
are functions with these‘properties. In the presence of an existence
theorem a uniqueness theorem showé that the defining properties of ;he
solution class characterize the solution completely. However, a unique-~
' : ness theorem can be even more valuable when no general existence theorem
1s known. In such cases it may still be possible in certain instances,

corresponding to special choices of the boundary or data, to construct a

solution in the chosen solution class. A uniqueness theorem then shows
! that the solution is the correct one. An interesting example of this

occurred in the theory of the diffraction of electromagnetic waves by a

perfectly conducting circular disk. In 1948 J. Meixmer [20] proved a
}, uniqueness theorem for this problem.and used it to show that a solution J
i that had been published in 1927 was incorrect. Of course, in the absence
; of a general existence theorem it 1s desirable to pfove uniqueness in as

N e ST A TR TS = . e gt =
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large a solution class as possible since this facilitates application of
the uniqueness theorem in specific instances.

The Boundedness Question for the Displacement Fields. Linear

-~

elastostatics is an approximation that is valid for small displacements.
I1f the displacements are bounded then by suita§1e scaling they may be
made arbitrarily small. BHence it is natural to make boundedness of the
displacements a defining property of the solution class. Indeed, this
property has often been employed in constructing solutions of particular
problems. It has also been used by J. K. Knowles and T. A. Pucik {14]

in the formulation and proof of a general uniqueness theorem for plane
crack problems. However, it is shown in this paper that uniqueness holds
in the larger class of solutions with locally finite energy, without
boundedness conditions. This result shows that the boundedness hypothesis
is redundant and the boundedness property, in instances where it holds,

must be derivable from the other hypotheses.

Displacement Fields with Locally Finite Energy. In this paper H

it is taken as a fundamental principle that equilibrium displacement

fields in elastic bodies must have finite strain energy in bounded por-

tions of the bodies. Such displacement fields will be called displace~-
o ment fields with locally finite energy (or, for brevity, fields wLFE).
) The equilibrium displacement field corresponding to prescribed body
\ forces will be characterized among all fields wLFE, by the »rinciple of
virtual work. The class of displacement fields that obey these two
principles will be called the solutions with locally finite energy (for
( brevity, solutions wLFE) of the elastostatic boundary value problems. t
.- The principal results of this paper are uniqueness theorems for this ~

v class of solutions. In particular, the uniqueness of solutions wLFE in




bounded bodies is proved without additional hypotheses concerning the
boundary or the displacement field. The uniqueness of solutions WLFE in
unbounded bodies is proved under a growth restriction on the behavior of
the stress or displacement fields at infinity. Moreover, it is shown by
examples that a growth restriction is necessary for uniqueness.

The remainder of the paper is organized as follows. The class
of displacement fields WwLFE is defined in §1. 82 contains the definition
of the class of solutions WLFE in homogeneous elastic bodies of arbitrary
shape, subject to prescribed surface tractions, prescribed body forces
and pteséribed displacements or stresses at infinity. The regularity
properties of solutions wLFE are also discussed in this section. §3
presents the uniqueness theorems for solutions WwLFE of problems with
prescribed surface tractions. In §4 the methods and results of §3 are
¢<tended to the other classical boundary value problems of linear elasto-
statics including problems with prescribed surface displacements,
problems with mixed boundary conditions, problems for inhomogeneous

elastic bodies and n~dimensional generalizations. §5 contains a

discussion of related literature.




1. DISPLACEMENT FIELDS WITH LOCALLY FINITE ENERGY

A fixed system of Cartesian cﬁordina:es is used throughout the
paper and points of Euclidean space are identified with their coordinate
triples (xl,xz,xa) = x € R}, With this convention each elastic body in
space is associated with a domain (open comnected set)  C R® that
describes the set of interior points of the body. The closure and
boundary of Q are denoted by T and 3Q = & - Q, respectively. The nota-
tion of Cartesian tensor analysis [11l] is used to describe the physical
variables associated with elastic bodies. In particular, tensors of
various orders are denoted by subscripts and the summation convention is
used.

The fundamental unknown of elagstostatic boundary value problems

is the displacement field. It is denoted below by u; = ui(x). The

notation u, j = auilaxj is used for the covariant derivative of uy. The
]
strain tensor field eij(u) associated with uy is defined by the differen-
tial operator
(1.1) e, () =1 (u,  +u, )
* 1] 2 "4, i1

It is assumed, following G. Green [7 and 18, pp. 11-12 and 95-99], that
for quasi-static isothermal small deformations of an elastic body there

is a positive definite quadratic function of eij’

’ 1
(1.2) we3 cijkl eij &g *

such that for all XC Q




(1.3) W,

-1 I c e,,(u) e ,(u) dx
K" 2], C15e C13 ke 'e <

is the strain energy of the displacement field uy in the set K. The

positivity assumption means that

(1.4) e > 0 for all eij -ac..¥%0

C13ke ®13 44
The stress-strain tensor cijkl is uniquely determined by w if the natural

symmetries

(1.5) | Ciike T Syik " Skeyt

are assumed. The stress tensor field Uij(u) associated with u, is given

i
by the differential operator

(1.6) Oij(u) = cijkl ekl(u)

The positive definiteness of w implies that Gij = cijkl 1o has a unique
1 1
solution eij Yijkl °k2 and w 3 oij eij 2 Yijkl °1j Oroe In

particular,

(1.7) Wy --% JK aij(“) eij(u) dx = %.JK Yijkz °ij(“) °k£(“) dx

is a functional of oij(u) alone. A body is homogeneou§ if and only 1if

cijkl is constant in Q. It is isotropic if and only 1if [11, 18]
(1.8) cijkl = A 515 6k£ + u(éik sz + 612 ij)

where A and |y are scalars such that 4 > 0, 3X + 2u > 0. The results in
§2 and §3 are formulated for the case of homogeneous anisotropic bodies.

In 84 it is shown that the uniqueness theorems hold for the more general

case of inhomogeneous anisotropic media with bounded uniformly positive




definite stress-strain temnsor. This means that the components cijkl(X)
are Lebesgue measurable and there exist positive constants c, and €, 2 cy

such that

1.9) €, eij eij < cijkl(x) eij W) ¢ eij eij for all x€ Q

and all fe_,,i - eji'
The most general uniqueness theore=s for solutions wWLFE will be
obtained by making the class of displacement fields wLFE as large as

possible subject to the LFE condition. Hence it is natural to define the

energy integrals WK(u) to be Lebesgue integrals and to interpret the

differential operators eij in the distribution-theoretic sense. It can
be shown that this choice has the additional advantage that the set of
displacement fields wLFE is a complete space in the sense of convergence
in energy on bounded sets. It was by using such complete function spaces
that Fichera proved the existence of solutions of the elastostatic
boundary value problems in bounded domains.

In the remainder of this section several function spaces are

defined that are needed for the formulation and proof of the uniqueness

N theorems. In the definitions 9 C R} denotes an arbitrary domain.

4 The definitions are based on the Lebesgue space

,' (1.10) L,(@Q) = {u: @+ R l u(x) is L-measurable, fh u(x)? dx < o}
and the associated spaces
' Lfoc(ﬂ) = {u: Q +R | u€ L,(X) for every bounded

. (1.11)
‘ measurable K C Q}
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(1.12) Lint(ﬂ) = {u: 2+ R | ue L,(C) for every compact CC )
and

ol Lgom(ﬂ) =L,@) N {u | u(x) is equivalent to 0 outside
(1.13)
a bounded set}
)
It is clear that L3°"() C L, () C Lfoc(ﬂ) c Li“t(n). Moreover,

L:om(ﬂ) =L,() = Lfoc(ﬂ) if and only if Q is bounded. Note that the

condition u € Lfoc(ﬂ) restricts the behavior of u near 3Q because the
sets K in (1.11) can be any bounded open subsets of Q. The condition

u € L%nt(ﬂ) is weaker because it does not restrict the behavior of u near
9. All of the function spaces used below are spaces of tensor fields
on { whose components lie in certain linear subspaces of L}nt(ﬂ).

int

The space L, (R) may be interpreted as a linear subspace of

L. Schwartz's space D'(Q) of all distributiouns on € [21]. Thus functions

ue L}nt(ﬂ) have derivatives of all orders in D'(Q) and if
(1.14) A= T A a"“l/ax‘;ll a3 a?
0¢lafm

(where a = (®,,a,,8,), |a| = a, + a, + a,) is a partial differential

operator with constant coefficients then Au € D'(R). The notation

int

Au € L, () (resp. Lfoc(ﬁ),hLz(Q), Lfom(ﬁ), etc.) will be interpreted

to mean that the distribution Au is in the subspace L:nt

() (resp.
L3°°@), L, @), LS°™(Q), etc.). If A, A,,++=, A_ is a set of partial
differential operators with constant coefficients the following notation

will be used.

(1.15) Lz(AliAzi...!An;Q) =L, () n {u l Aju € Lz(n) »j = 1,2,4°+,n}
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(1.16) Lf”(A,,A,,---,An;n) - Lf°°(§2) nfu]aue Lf°°(9) o = 1,2,000,n}

a.17) iitt

2 A

TR £l OWR O hgu € L% (Q),5 = 1,2,++4,n}

(1.18)  L77(A; 45,7 %,A 5@ = L;7(R) N Ly (A1,A,,005A,50)

In particular, if {A;,Az,°°°,An} = {a|°|/ax?‘ u(32 a3 | 0< Jo] <m}

the following notation will be used.

m .
(1.19) L) = L, (A,,A, % %A 30)
(1.20) 1200y = 1200 a0 e A 50)
. 2 2 1382 »8n
(1.21) L 1P0) = LI (A, A, , 00 A 50
(1.22) Ly’ SR(@) = L7704 ,A5,0 0,4 ;0)

Notations such as uy € Lfoc(ﬂ), e,. € L,(R2), etc. will be inter-

i3
preted to mean that each component of the tensor field is in the indicated
space. With this convention the classes of displacement fields wFE (with
finite energy) and wLFE may be defined as follows. .
Definition. A vector field uy on Q is said to be a displacement

field wFE if and only if it is in the function space
(1.23) EQ@) = {u | u, € L¥°@), e, ) €L, @)}
. i 2 e & 2

Similarly, u, is said to be a displacement field wLFE if and only if it

i

is in the function space

(1.24) EC @) = {u | u, € LE°°@), e, () € L))

i]

Note that Eloc(ﬂ) = E(Q) if and only if Q 1s bounded.
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The terminology used in the definition is justified by the obser-

vation that if the stress-strain tensor satisfies (1.9) then eij(u) €L, -

implies oij(“) € L,(R) and hence u € E(R) implies

1 ,
(1.25) Wn =3 Jﬂ Oij(u) eij(u) dx < @

L0c

Loc
() implies oij(u) €L, ()

Similarly, if (1.9) holds then e (u) € L,

3
and hence u € E%OC(Q) implies

1l
(1.26) WK = E-JK Oij(u) eij(u) dx < «

for all bounded measurable sets K C {l.

Each of the function spaces defined above is a complete space
with respect to a suitable topology. Several examples of this will be
indicated. It is well known that L,(R) is a Hilbert space with scalar

product
(1.27) (u,v) = Jﬂ u(x) v(x) dx

Similarly, E(®) and EEOC(Q) are Fréchet spaces [28] with respect to the

families of semi~norms defined by

1/2
(1.28) pK,E(“) = [IK ui(x) ui(x) dx + Iﬂ cij(“) aij(“) dx)

and

foc 1/2
(1.29) pK’E(u) = [jx{ui(x) u, (x) + aij(u) °1j(“)} dx)

respectively, where K is any bounded measurable subset of Q. In parti-
loc(g

cular, if i is bounded then E

) = E(Q) is a Hilbert space., These
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completeness results play no role in the uniqueness theorems given below.
However, they are essential for the validity of existence theorems for
solutions WLFE. This is evident from the proofs of Fichera's existence

theorems for bounded bodies.

Loc;

In the definition of E (RQ) the operators e, (u) defined by

3

(1.1) are interpreted in the distribution~theoretic sense. Hence the

condition u € Ezoc(ﬂ) does not necessarily imply that the individual

derivatives u, , € Lfoc«D. However, it 1s known that if u € E°5(R)
>

then u, 3 € L,(C) for.every compact set C C . This is a consequence of
1

Korn's inequality in the form

13 3
lui,jlfz(c) < 7 121 Iuiliz(K) + 1,§-1 leij(u)lfz(x)

(1.30)

" which is valid for all u e Ezoc(ﬂ), all bounded open sets KC  and all

compact sets C C K with a constant Y = Y(C,K). This result can be
derived from the version of Korn's inequality due to J. Gobert [8].
Moreover if  has the cone property [1, 9] then one may take C = K in

(1.30). Hence in this case

.y ve EXC@) = u, e 1)@

In particulzr, for domains that are bounded and have the cone property

(1.32) u€ E(@Q) =u, €L}(Q

i

[ ——




TIE

2. EQUILIBRIUM PROBLEMS WITH PRESCRIBED SURFACE TRACTIONS

In this section elastostatic equilibrium problems are formulated,
and regularity ﬁroperties of the solutions are discussed, for homogeneous
anisotropic elastic bodies of arbitrary shape that are subject to
prescribed body forces, prescribed surface tractions and, in the case of
unbounded bodies, prescribed displacements or stresses at infinity. The
cases of prescribed body forces Fi’ zero surface tractions and zero dis-
placements or stresses at infinity are discussed first.

The Principle of Virtual Work. Let Q C R’ be an arbitrary domain

Loc

and let u € E7 (1) be the equilibrium displacement field WLFE correspond-

com

ing to body forces Fi €L, (?) and zero surface tractions. Imagine that

the equilibrium is disturbed slightly by changing u; to ug + vy where Vi

is a field wFE from the set
(2.1) ER@) = E@ 0 {v | e (v) € 17}

Let K C R be a bounded measurable set such that eij(v) is equivalent to
zero in § - K. Then WK(O(u)) and WK(O(u + v)) are the strain energies in
K before and after the disturbance. Hence the work done against internal
forces during the disturbance is WK(o(u + v)) - Wk(o(u)). The energy
norm of v can be made arbitrarily small. If this is done and terms
quadratic in v are dropped, in keeping with the linear theory, the

difference becomes
(2.2) I aij(u) eij(v) dx = Work done against internal forces
Q

Moreover, if the body forces are constant during the displacement then

15

———

- -




16

(2.3) -I Fi vy dx = Work done against body forces
Q

No further work is done during the disturbance if the surface tractions
are zero. The principle of virtual work states that the true equilibrium
field ui(x) is characterized by the property that the total work done

against the internal and external forces in any (small) disturbance of

uy consistent with the constraints is zero [23]. Thus in the present
case
(2.4) Iﬂ Oij(u) eij(v) dx - [ﬂ F, vy dx = 0

for all v € Ecom(ﬂ). This motivates the following

Definition. A displacement field uy is said to be a solution
wLFE of the equilibrium problem for the domain @ with body forces
Fy
(2.4) holds for all v € E°O(D).

€ L:om(ﬂ) and zero surface tractions if and only if u € Eloc(n) and

Necessary Conditions for the Solvability of Problems with Zero

Surface Tractions. The fields

(2.5) vi(x) = a + Eijk bj X, s X€ R}

where a, and bi are constant vectors and eijk is the alternating tensor

[11) satisfy e,,(v) = O in R® and hence v € E°®(R?). In particular,

1]

ve Ecom(ﬂ) for every domain Q. It follows from (2.4) with this choice

of v that necessary conditions for the existence of a solution wLFE are

(2.6) J Fydx = 0 *
Q

(2.7) J (F, x, - F, x,)dx =0
g 1T TN
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Physically, these conditions mean that the body forces Fi exert no net
resultant or moment on the body. They are assumed to be satisfied in
the remainder of the discussion of problems with zero surface tractions.

Non-uniqueness of the Displacements for Problems with Zero -

Surface Tractions. Equations (2.5) define a displacement field that

describes a rigid body displacement [1l1]. Moreover, since eij(v) = 0 in
R® the fields (2.5) may be added to any solution u of (2.4). Physically,
this means that the equilibrium displacement fields are determined only
up to rigid body displacements. Hence, the natural uniqueness theorem
for problems with zero surface tractioms asserts that the stress and
strain fields are unique while the displacement fields are unique modulo
fields of the form (2.5).

Bounded Bodies and Displacement Fields wFE. If I is bounded then

Eloc(g) = E(Q) and every solution WLFE actually has finite total strain

energy in Q. More generally, if u is a solution WLFE for an arbitrary
domai; 1 and if u € E(Q) then u is said to be a solution WFE. The
uniqueness of solutions wFE is proved in §3 without additional hyp;theses
concerning f or the displacement field.

Unbounded Bodies and Equilibrium States with Prescribed Stresses

or Displacements at Infinity. If Q is unbounded then, in general, solu-

tions WLFE in  are not unique. Simple examples of non-uniqueness are
available for the case Q = R). The field ui(x) - bijxj with constant

b ¥ 0 1s a solution WLFE in R? with F;(x) = 0 and oij(u)

13 " byt
- cijkl bkl ¢ 0 since eij(u) - bij and aij(“) eij(u) = cijkz bij bkz > 0.
A second example is provided by the homogeneous isotropic plate with

domain § = {x | X; 0%, € R,]x’| < h} and stress-strain tensor (1.8). 1In

this case u; = (A + 2u)x,, u, = (A + 2u)xz, u; = -2ix, defines a
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displacement field in Q with Fi(x) £ 0, zero surface tractions and
constant non—-zero stress field g,, =0,, = 6\u + 4u2, all other oij = 0,
These examples show that uniqueness theorems fof solutions WLFE in
unbounded domains cannot hold without some growth restrictions at

infinity on u, or oij'

The problem of finding suitable growth restrictions on uy or o,

3

that guarantee the uniqueness of solutions waE is a special case of the
classical problem of elastostatics of finding equilibrium displacement
fields that have prescribed stresses or displacements at infinity. Many
problems of this type are discussed in the treatise of Love [18]. To

formulate the problem with prescribed stresses at infinity let
2.8 -« Qn {x x| >R
(2.8) % o {x | |x| >R}

and let o:}(x) be a stress field that is defined in QR o> fOr some R,
]

and has the desired behavior at infinity. A solution wLFE in @ is sought

such that cij(u)(x) i{s close to st(x) at infinity, in a suitable sense.

a0
One possibility is to require that Uij(“) - Uij € Lz(ﬂg,m) or,

equivalently,

(2-9) Wn (O’(u) - o_cn) < ®

£
This suggests the

Definition. A solution WLFE of the equilibrium problem for an

unbounded domain ! is said to have prescribed stresses Uij at infinity

1f and only 1if (2.9) holds for some R > 0.

Solutfions WwLFE with stresses 0;3 = 0 at infinity are just the

solutions wFE defined above. Condition (2.9) is correct in this case,

at least for exterior domains where the stresses generated by body forces

F € LS°P(Q) are known to satisfy o, (u)(x) = 0(|x|™?), |x| + = [13].

1)

S e e e




To formulate the problem with prgscribed displacements at infinity
let d:(x) be a displacement field that is defined in Qg,c for some R, and
has the desired behavior at infinity. A solution wLFE in Q is sought
such that ui(x) is close to u:(x) at infinity, in a suitable sense. One
might try the condition u, - u: € Lz(QR,a)' in analogy with (2.9).
However, this condition is too strong. In fact, it is known that if
u, =0 and Q is an exterior domain then the displacements generated by

i
body forces Fi € Lfom

(Q) have the exact order ui(x) - 0(|x|_1), [x] + =
[10]. Thus a weaker conditi:ia consistent with this estimate is needed.

In what follows the condition
(2.10) - lu- o1 = 0@), r+=
is used where

(2.11) lul; 5" IQ 5 ui(x) ui(X) dx ,
» r,

(2.12) QrG-Qn{xIrflxlfr-f-G)

and § > 0 is a constant.
Definition. A solution WLFE of the equilibrium problem for an

unbounded domain { is said to have prescribed displacements u:

at
infinity if and only if (2.10) holds for some § > 0.

A sufficient condition for (2.10) to hold with u: =0 is
(2.13) u (x) = 0(|x|™) , x| + =

Of course, the precise order condition on uy that is sufficient to guar-
antee (2.10) in particular cases will depend on the geometry of  near

infinity. For example, if R = {x | |x,| < h} then jht 5 dx = 0(r),
. ’
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r + ©, and ui(x) = 0(1) is a sufficient condition for (2.10) with ug = 0.

1If @ = {x | (x,,%,) € G, x; € R} where G C R? is bounded then
fhr 5 dx = 0(1) and ui(x) = (]x]llz), Jx| + =, is sufficient.

Ellipticity of the Cauchy-Green Operator. The principle of

com

virtual work (2.4) with v, € C:(Q) CE () implies that the equilibrium

fields u; are weak solutions of the system of partial differential equa-
g
tions 11,3

in this section, then the system may be written

(u) + Fi = 0 in . If the body is homogeneous, as is assumed

(2.14) Aik U + F1 =0
where

2
(2.15) Aik = cijk2 ] /3xj axz

The matrix differential operator (Aik)’ with coefficients that satisfy
the positivity and symmetry conditions (1.4), (1.5), will be called the
Cauchy-Green operator. Conditions (1.4), (1.5) imply that (Aik) is
strongly elliptic (cijkl Ny My Ej 52 # 0 for all non-zero Ny, Ei) and
hence elliptic (det (cijk2 Ej EL) # 0 for all non-zero Ei) [12, p. 20).

G. Fichera [5]) has used the theory of elliptic boundary value problems

to prove both interior and boundary regularity theorems for weak solutions
of (2.14). The interior and boundary regularity properties of solutions
wLFE that are implied by Fichera's results and methods are described here
briefly.

Interior Regularity of Solutions WLFE. Fichera's interior

regularity theorem {5, p. 36] implies the following results.

Theorem 2.1. Let 2 c R® be an arbitrary domain. Let

int int

,int
€ 1L; 2

«), eij(“) €L, (Q and F, € L‘: () where m > 0 is an

Uy

~t
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integer. Assume that (2.4) holds for all v, € C;(Q). Then
m+2,int(9)'

ug €L,
Corollary 2.2. Let R C R? be an arbitrary domain and let u be a

solution WLFE of the equilibrium problem for Q with F, € L?’com(ﬂ). Then

u, € L2, 10t g,

Corollary 2.3. 1If the hypotheses of Theorem 2.1 or Corollary 2.2
hold then u, € C"(Q).

Corollary 2.4. Let QC R® be an arbitrary domain and let
ue€e EIOC(Q) satisfy eij(u) = % (ui.j + uj,i) = 0 in Lfoc(Q). Then there
exist constants a;, bi such that ui(x) -a + eijk bj Xy in Q.

Fichera proved Theorem 2.1 in [5]) under the hypotheses f € L?(Q),
u€L,(@). However, the theorem as stated above is 1 immediate conse-
quence of his theorem. Covollary 2.2 is a special case of Theorem 2.1.
Corollary 2.3 follows from Theuvrem 2.1 and Sobolev’s imbedding theorem
iS5, p. 26)]. Corollary 2.4 may be verified by noting that u is a solution
wLFE in Q@ with body forces F,=0in . Thus u, € c @, by Corollary

2.3, and u " 0 in Q. The proof that every such vy has the form
1 4

+u
i,] ]
= ai + €

u is classical [11, p. 71].

15k B3
Boundary Regularity of Solutions wLFE. Fichera's theorems on

i

regularity at the boundary imply the following results (see [5, Chapters
10 and 12]). .

Theorem 2.5. Let 2 C R? be a domain with boundary 3Q € c®. Let
u be a solution WLFE of the equilibrium problem for f with

€ L5°%(@) n c°@). Then u, € C°(@) and

F i

i

(2.16) oij(u) nj = 0 on 3

where n, 1s the unit exterior normal field on 3Q.
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Corollary 2.6. Let x, € 3Q and assume that there is a neighbor-

hood Nd(xo) = {x | Ix - xnl < 8} such that 30 n Né(xo) e c”. Moreover,

let F, € L; () 0 € @0 Ng(x,)). Then u

i
Uij(u)nj = 0 on 0 N Na(xo).

i € @ n Ns(xo)) and
Corollary 2.6 is an immediate consequence of Théorem 2.5 since
boundary regularity is a loca; property. Boundary regularity results
can also be proved when 92 and Fo have a finite nucber of derivatives.
The following results can be proved by the methods of [5]; see also [1].
Theorem 2.7. Let Q C R® have a boundary point x, such that

30 N Ng(x,) € 2

for some § > 0 where k > 0 is an integer. Let u be a
solution wLFE of the equilibrium problem for @ with F € L7 N
LY@ 0 Ng(x,)). Then u, € LE2@ 0 Ng(x,)).

Corollary 2.8. Under the hypotheses of Theorem 2.7,

(w)

€ Ck(ﬁln NG(xo))' Moreover, if k > 1 then o = (0 on

ui nj

30 N N (x,) .

ij

Corollary 2.9. Let 2 ¢ R® be a domain with boundary 3Q € Ck+2,

k > 0. Let u be a solution wLFE of the equilibrium problem for @ with

F1 € Lf’com(ﬂ). Then u, € Ck(ﬁ). Moreover, if k > 2 then uy is a

classical solution of the equilibrium boundary value problem with body

k-2

forces Fi € C, o c Lf’com(ﬂ) and zero surface tractions; i.e., u

i
satisfies (2.10) and

(2.17) cijkl uk,jl + Fi =0 in O

Bodies whose boundary 30 is a piece-wise smooth surface with '
piece-wise smooth edges with corners are of great interest for applica-

tions. A class of bodies of this type are the C-domains, defined and .

studied by N. Weck [24]. Solutions wLFE in such domains are regular and
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satisfy the boundary condition (2.16) near smooth points of 3§, by
Corollary 2.8. At edge and corner points of 87 condition (2.16) is

meaningless, because n; is undefined, and the only regularity property

i
that remains is the LFE condition. For this reason the LFE condition is
sometimes called the "edge condition" [20].

Equilibrium Problems with Non~Zero Surface Tractions. The formu-

lation (2.4) of the principle of virtual work is appropriate for the case
of zero surface cractions. The surface traction at a point x, € R is
by definition the vector oij(“(x°)) nj(xo) and hence is defined only at

boundary points where the boundary values cij(u(xo)) and the normal vector
nj(xo) exist. If a portion S C 930 is sufficiently scooth for nj and
boundary values of oij(u) to exist on it then the principle of virtual

work can be extended to include the boundary condition

t1 on S
e ] =
2.18) oij(“) nj 6 on 30 -

To do this the term
(2.19) —J ti vy dS = Work done against surface tractions
S

must be added to (2.4), so that the extended principle becomes
(2.20) JQ cij(“) eij(v) dx -~ JQ Fi vy dx - JS TV dS = (

for all v € Ecom(ﬂ). Moreover, it is known from Sobolev's imbedding

conm

theorem that every v € E- () has boundary values v € L,(S) on smooth

portions S € 30 (1, p. 38]. 1In the important special case where 3R is

(u) n, exists almost everywhere on 31 and §

3 J

piece~wise sucoth then o,

may be replaced by aR in (2.18), (2.19) and (2.20).




3. UNIQUENESS THEOREMS FOR PROBLEMS WITH PRESCRIBED SURFACE TRACTIONS

The strain energy theorem for classical solutions of the elasto-
static equilibrium problem with body rorces Fi and zero surface tractions

states that [18, p. 173]

1 1
(3.1) Wh = E-JQ Uij(u) eij(u) dx = E-JQ Fi uyg dx

The uniqueness of classical solutions is a corollary. In this section
the strain energy theorem is extended to arbitrary domains Q and all
solutions wFE (= solutions wLFE and zero stresses at infinity if Q is
unbounded) and solutions wLFE and zero displacezents at infinity. The
uniqueness of solutions WLFE with prescribed stresses or displacements
at infinity follow as corollaries. The simple case of solutions wFE is
treated first.

Theorem 3.1. Let u be a solution WFE of the equilibrium problem

com

with body forces F, € L, () and zero surface tractions in a domain

i
2 c R}, Then the strain energy equation (3.1) holds.

The proof is immediate from the representation (1.7) for Wb and
the definition of solution wWFE, since one may take vy = uy € E(R) in
(2.4).

Corollary 3.2. Uniqueness of Solutions wFE. Let uix), uiz) be

two solutions wFE of the equilibrium problem with the same body forces

Fi € Ecom(ﬂ) and zero surface tractions. Then .

(3.2) w)) = o, @?) ma

944 3

and there exist constant vectors ay, bi such that

25
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My _ (2 -
(3.3) ug (x) ug (x) ag + Eijk bj Xy in
Proof. ug = uil) - uiz) is a solution wFE wirh body forces
F1 2 0 in  and zero surface tractions. Thus (3.1) holds with Fi = 0 o
and oij(“) = 0 in L,(R) by the positive-definiteness of the energy.

Moreover, oij(") € Cw(ﬂ) by Corollary 2.3 and hence oy (Wx)Z01in Q

3

which implies (3.2). Finally, Corollary 3.4 implies ui(x) - ai-i-sijkbj X

which implies (3.3).

Corollary 3.3. Unigqueness of Solutions WLFE with Prescribed

Stresses at Infinity. Let 2 C R? be unbounded and let uil), uiz) be two

solutions WLFE of the equilibrium problem with the same body forces Fi’
zero surface tractions and the same stresses OIS at infinity. Then (3.2)

and (3.3) hold.

2 o
Proof. By hypothesis, both cij(u(l)) - O:j and oij(“( )) - Uij

are in L2(QR o for some R > 0. It follows that the difference field
s

L) () :
uy uy satisfies Oi (u) € Lz(QR,m)' Hence uy is a solution

Ui j

wFE with body forces Fi Z 0 in 9 and zero surface tractions. Equations
(3.2), (3.3) follow as in the proof of Corollary 3.2.

The uniqueness theorem for solutions wLFE with prescribed dis-
placements at infinity will be based on the following generalization of

Theorem 3.1.

Theorem 3.4. Let u be a solution WLFE of the equilibrium problem

com

with body forces F, € L2 () and zero surface tractions in an unbounded

i
domain Q ¢ R®. Moreover, let u satisfy

-2
(3.4) J:'“lr 5 dr = %o

3
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for some R > 0 and § > 0. Then u is a solution wFE in Q and the strain
energy equation (3.1) holds.

A proof of Theorem 3.4 is given at the end of the section,
following the statement and discussion of the remaining uniqueness
theorems.

Corollary 3.5. Uniqueness of Solutions WLFE with Prescribed
1) (2
Yi

Displacements at Infinity. Let £C R® be unbounded and let ug %,

be two solutions WLFE of the equilibrium problem with the same body
forces Fi’ zero surface tractions and the same displacements u: at
infinity. Then (3.2) and (3.3) hold.

Proof. By hypothesis Iu(k) - d”lr’é = 0(r¥?), r+ o, k=1, 2.
It follows by the triangle inequality that the difference field

u, = u$) - 0 satisfies 1ul = 0(r¥/?), r > =, or equivalently
i i i r,$

(3.5) lul:,’a =0(xr), T+

which implies condition (3.4). Moreover, u is a solution wWLFE with
Fi = 0 and zero surface tractions. Hence (3.1) holds with Fi = (0, by
Theorem 3.4, and the conclusions (3.2), (3.3) follow as before.

Uniqueness Theorems for Problems with Non-Zero Surface Tractions.

The uniqueness theorems proved above are valid for arbitrary bounded and
unbounded domains 2 € R?. No local or global restrictions are imposed
on € or 9Q. If a portion S C 92 is smooth enough for the surface
tractions Oij(u) nj and surface integrals (2.19) to be defined then
solutions wLFE with non-zero surface tractions t, on S are defined by

the principle of virtual work. The uniqueness theorems for solutions

with zero surface tractions extend immediately to this case because the
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difference of two solutions with the same surface tractions ti is a

solution with zero surface tractions.

Other Growth Conditions at Infinity. It is clear from condition

(3.4) of Theorem 3.4 that condition (3.5) is only one sufficient condition

for uniqueness. Generalizations are obtained by replacing (3.5) by
(3.6) 2 5 = 0@, r+ =
T,

where p(r) is a function such that

(3.7) I” p(r)~! dr = +w
R

If Q is an exterior domain ({x | |[x| > R} € @ for R > R)) and if
the body is isotropic as well as homogeneous; i.e., (1.8) holds, them
the uniqueness theorem can be proved under weaker growth restrictioms

than (3.4). Indeed, under these conditions Fichera [4] has proved that

(3.8) u () = 0(1) = u,(x) = 0(}x|™") and 0y4 G0 = o(lx]™

M. E. Gurtin and E. Sternberg [10] have rederived this result and proved

the complementary result that

(3.9) 0y (%) = 0(1) = u;(x) = O(|x[™") and 0,40 = 0(x]™%

J

Moreover, these results are based on an expansion theorem for biharmonic
functions in a neighborhood of infinity and are independent of 9Q. Thus
the uniqueness theorems for solutions wLFE with prescribed displacements
or stresses at infinity in homogeneous isotropic solids are valid for

arbitrary exterior domains ) under the conditions

(3.10) u (x) - uy(x) = 001), [x| +=
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and
(3.11) cij(u) (x) - Ozj(x) =0(1), |x| +w
respectively.

Proof of Theorem 3.4. The idea of the'proof is to put vy muy

in the principle of virtual work identity (2.4), as in the proof of
Theorem 3.1. However, this cannot be done directly when u is a solution

conm

wWLFE because v € E (2) must have compact support. Instead, let

vi(x) = $(x) ui(x) where
(3.12) ¢(x) = Y((|x| - R}/&), R >0, § >0, x e R®

and § € C(R) is a function such that ¢'(1) < 0, 0 < Y(T) < 1 and

A
o

1, T <
(3.13) Y1) = <
0, Tt

v
[

These properties imply that ¢ € C?(R’), 0 < ¢(x) <1 and

1, |x| <R

IA

(3-14) ¢(x) = <[

0, |x] >R+ 6

v

It follows that for all u € EX°S(Q), v = ¢u € ES°%(Q) and

(3.15) Vigmbuy g4 ug

Moreover,

(3.16) 6,30 = v (x| - R)/8) x,/8]x] '
and

(3.17) supp ¢ 4 C i o

A
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With this choice of vy
(3.18) eij(V) = ¢ eij(u) +-% (tb’i uy + ¢,j uy)
and hence

Oij(u) eij(V) =¢ Oij(u) eij(u) + Oij(u) 01 Yy
(3.19) '
=0 ) eyy(w) + &7 ' (lx] - B/ oy (W) Ry uy

where ﬁj - xj/lxl. By assumption F, € Lfom(ﬂ). Choose Ry so large that
supp Fi c {x I le < Ro} and substitute vy - ¢ ug and (3.19) in (2.4)
with R > R,. The result can be written

Iﬂ ¢ Gij(u) vij(u) dx + § I ¥ oij(") Xy uj dx

Q
(3.20) R,8

- F,u, dx=0
[ 5o
The goal of the remainder of the proof is to calculate the limit

of equation (3.20) for R + « and to show that the limiting form is the

energy equation (3.1). To this end define

-] )
(3.21) £(R) = Jn Y8~ (|x] - R)) Gij(u) eij(u) dx - jn F,  ug dx, R 2 Ry
By equation (3.20) an alternative representation is

(3.22) f(R) = i I W'(G'l(lxl - R)) oij(u) ii uy dx
Q
R, 8
The properties of f(R) that are needed to couplete the proof of Theorem

3.4 are described by

Lemma 3.6. f € CI[RO,ﬂ) and has derivative

@2 e@=T [ v a0 0w ey a2 0
%,8

T 6 L A T Y RPTRTE T TR WM
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In particular, £(R) is monotone non-decreasing on [R,,*®). Moreover,
(3.24) £2(R) < Muld o £'(R), R 2R,

where M2 = (87} c,) 0?:;1 V' (m|.

Proof of Lemma 3.6. Form the difference quotient

WHE®R + h) - £R)) - J T (x)-R-0)) - w87 (|x]-R))}

(3.25) R, R+h+$

x o, (u) e,,(u) dx

J i3

The quotient

(3.26) b HYPE (x|-R-1)) - WP (| x|-RDF + =671 $* (87 (|x]|-R)), b+ O

uniformly for x in bounded sets in R}. Moreover, oij(u) eij(“) is
Lebesgue integrable on bounded subsets of . Thus passage to the limit

h + 0 in (3.25) is permissible by Lebesgue's dominated convergence theorem.
Hence £'(R) exists for all R > R; and is given by (3.23). It is easy to
show that the integral in (3.23) defines a continuous function of R which
1s non-negative. The monotonicity of f(R) follows.

To prove the inequality (3.24) note that (3.22) implies the

» estimate
{
4 (3.27) |£(®)] < &7F Iﬂ ' (87 (|x]|-R)) ! |oij(u) £ uj[ dx, R > R,
v R, 6 ,
?i Moreover, by repeated application of Schwarz's inequality
4
(3.28) Ioij(u) Ry ujl < (cij(u) Ry okj(u) ik)l/z (uj uj)llz
¢ .
3, 2
‘ (3.29) logy () %1 < [igl oij(u)]
V4
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1/2 3 12
0yy() &y 0, C0) & < [ I oy 2 ] [kgl CH) ik)z]

(3.30)

3
I (o, %)% < Z 2 o}, = o, (w) ©

(uv)
=1 1=1 j=1 SRR

Now eij = Yijkl Ora together with (1.9) imply

-1 -1
(3.31) €1 04y 04y < 955 13 = Yigke %13 %2 < e 45 %43
for all Uij = oji' Combining these inequalities gives
. 2 < V2 12 Y2 {
(3.32) IUij(u) 2y uj| < el (Oij(u) eij(u)) (uj uy)

Substituting in (3.27) and using Schwarz's inequality again and equation

(3.23) gives

ler)] < &7° c}’zj o s™ (Ix]-R) | (Oij(u) e

»0

A

/
13 @V (u V2 ax

(3.33)

IA

-1 _1/2 172 1/2
s U W'} ogy @) ey d"] U o' “j“:‘d"]
9,6 &.s T

IA

-1 1/2 .1/2 1/2
6 )“u (6§ £'(R)) '“lR,G

where } = Max lw'(x)l. Squaring (3.33) gives (3.24).

Proof of Theorem 3.4 Concluded. Lemma 3.6 implies that f(+x)

exists as a finite number or +=. It will be shown that £(4®) = 0., There 1
are three cases to consider.
Case 1. 0 < £(+°) < +=. In this case there exists R, > R, such

that £(R) > £(R;) > 0 for R > R;. Hence (3.24) can be written

d 1 £'(R -2 -2
(3.34) -~ 3R (m] f—z%i)le IulR,G » R2 R, . ﬁ

and integration gives
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(3.35) . S S N tu: ?ar, R >
y f(R,) f(R) - ‘g,89r » R2 Ry

R,
In particular, since f£(R) > 0 for R > R;,
(3.36) M, JR jup 2, dr for R > R
: £(R,) - R, :,6 =%
But this contradicts hypothesis (3.4) of the theorem. Hence Case 1
cannot occur.
Case 2. f£(+°) < 0 and f(RI) = 0 for some R, > Ro‘ In this case
0 < £(R;) < £(+») < 0; i.e. £(4=) = 0.
Case 3. f(+») < 0 and £(R) < 0 for all R > R,. In this case

(3.34) and (3.35) hold and the latter can be written, since lf(R)[ = -f(R),

R
1 1 -2 -2
(3.37) TE®] > TR + M IR '“lr,s dr, R 2 R,
1

Hence condition (3.4) implies that f(4x) = Q.

It has been shown that (3.4) implies f(+=) = 0; that is,
(3.38) lin J lb(tS-l(lxl-R)) o,.(u) e,,(u) dx -J F., u, dx
R0 10 1] 4 g *+ 1

Since W(G-l([x[ - R)) is a monotone increasing function of R for each
fixed x € R? and tends to 1 everywhere when R + », (3.38) implies equation
(3.1). 1In particular WQ < ® because fn Fi ug dx is finite. This

completes the proof.




4. UNIQUENESS THEOREMS FOR OTHER EQUILIBRIUM PROBLEMS

The purpose of this section is to show how the methods.and results
developed above can be extended to the most general equilibrium problems
of linear elastostatics. Equilibria subject to other boundary conditions,
equilibria in inhomogeneous anisotropic bodies and n-dimensional general-
izations are discussed. In each case the boundary conditions for dis-
placement fields wFE and wLFE are defined by appropriate subspaces of
E(2?) and Eloc(ﬂ), respectively, and a corresponding form of the principle
of virtual work is given. Regularity and uniqueness results for the new
problems are indicated without proofs. 1In fact, the proofs of sections
2 and 3 are valid with minor modifications.

Equilibrium Problems with Prescribed Surface Displacements. The

case of zero surface displacements is discussed first. Suitable subspaces

of displacements fields are

com

(4.1) E,(Q) = Closure in E(Q) of E- (Q) n {u I supp u C Q}

com

.2) EY°@) = Closure 1n EX°(R) of E°°®(R) n {u | supp u c 0}

The topologies in E(Q) and Ezoc(ﬂ) are those defined by (1.28) and (1.29),

respectively. The notation

(4.3) ECC™(@) = E°N(@) n E ()

is also used. A solution wWFE of the equilibrium problem with body forces

F, € Lfom(ﬂ) and zero surface displacements in a field u € E (Q) that

i
satisfies (2.4) for all v € Eo(ﬂ). Similarly, a solution WLFE of the

same problem ig a field u € E&oc(ﬂ) that satisfies (2.4) for all

35
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v E £§°m(9). Problems with non-zero surface displacements
(4.4) ui(x) = fi(x) , X € 38

may be reduced to the preceding problem if there exists a field
u; € EzOc(Q) N {u | Gij(u°) € L:om(g)}. Then ui =u - ug is a solution
wLFE with zero boundary displacements.

The remaining boundary conditions can be formulated only when 3§
is piecewise smooth. It will be assumed that 9Q is a C-domain in the
sense of [24]. For such domains the unit exterior normal fi=ld ni(x) is
defined and continuous at all points of 9! except edges and corners and
one can define the normal and tangential components of vector field on

90 by

V T AV
(4.5) u; = ug + u; o, ug = (uj vj) vy
Moreover, u: vi = 0 for all ug, vy and hence

vV Vv T .T
v uy vi + ui vi

(4.6) ug vy

Equilibrium Problems with Prescribed Tangential Surface Tractions

and Normal Surface Displacements. Suitable subspaces of displacement

fields are defined by
.7 E,() = E@ 0 {u | u’ = 0 on 30}

(4.8) ELC@) = %) n {u | v’ = 0 on 30}

foc

The existence of u’ and u® on N for all u€ E Q) follows from Korm's ey

inequality and Sobolev's imbedding theorem. A solution WFE of the

com

equilibrium problem with body forces F, € L, (Q), zero tangential

surface tractions and zero normal surface displacements is a field

!
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u € Ev(Q) that satisfies (2.4) for all v e EU(Q). Similarly, a solution

]
WwLFE of the same problem is a field u € E:OC

(%) such that (2.4) holds for
all ve Esom(ﬂ) - Ev(ﬂ) n Ecom(ﬂ). Problers with non-zero surface trac-
tions and displacements are treated by reducing them to the preceding

case through subtraction of a suitable field.

Equilibrium Problems with Prescribed Normal Surface Tractions

and Tangential Surface Displacements. This problem is dual to the

preceding one. Appropriate classes of displacements are
4.9) E.(@) = E(®) n {u | u = 0 on 30}
(4.10) £2°c2) = EX°°@) n {u | uT = 0 on 30}

T

Equilibrium Problems with Elastically Supported Surface. Physi-

cally, this corresponds to the case where surface displacements produce

surface tractions that satisfy Hooke's law:
(4.11) cij(u) nj + B u; = 0 on 99

where B > 0 is defined on 9. A solution WLFTE is a field u € Eloc(g)

such that
(4.12) J g,.(u) e,,(v) dx - I F, v, dx + J Bu, v, dS = 0
q 13" %13 q 171 aq 174

for all ve Ecom(Q). Identity (4.12) is the principle of virtual work
for this problem, the last term being the virtual work done against the
induced surface tractions by the virtual displacement v. It follows from
(4.12) that (4.11) holds at smooth points of 3.

Equilibrium Problems with Mixed Boundarv Conditions. A mixed

problem that includes the preceding problens as special cases can be

formulated by decomposing 3Q into five portions and imposing one of the
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boundary conditions defined above on each portion. Thus, if '

(4.13) 3 = s, Uus,us, us_u S {disjoint union)

and

4.14) EX%@ = E°°( n{u|u=0ons, W =00n5,, uT=00ns,)
then the principle of virtual work
(4.15) J Oij(u) eij(v) dx - J Fi vy dx + J B ug vy ds =0

Q Q Ss
fo. all ve E;om(ﬂ) = Eioc(ﬂ) N Ecom(Q) characterizes the solutions of
the equilibrium problem that satisfy u = 0 on S;, v’ = 0 and

(o, . (u) nj)T =0on S,, u' = 0 and (Oij(u) nJ)v = 0 on S, oij(u) nj =0

ij
on §, and cij(u) ny + B u; =0onS;.
Regularity and uniqueness theorems will be discussed for this

mixed problem since it includes the others as special cases.

Regularity Theorems. The interior regularity properties of

solutions WLFE of the mixed problem follow from Theorem 2.1 and are
exactly the same as for the case discussed in section 2. Concerning

boundary regularity, it can be shown by the methods of Fichera's

monograph [5] that if Q is a C-domain of class ¢” such that Sﬂ = interior

of S, 1n 3 1s a C manifold for k = 1,*++,5, and if F; € (D) n 1777(@)
then solutions WLFZ of the mixed problem satisfy

l,loc(g).

ec@uslusiu Sy U S, USyNL, The condition

Yy
u, € L%,loc(ﬂ)’ which follows from Korn's inequality and Sobol~v's thecre-

is the "edge condition" that is needed for uniqueness. The boundar-
conditions on §,, S, and Ss are not discussed by Fichera in [5] bt .:

be treated by his methods.
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l h Uniqueness Theorems. Solutions WFE of the mixed problem lie in

! l 4.26) E@ =E@Nn{u|lu=00nS5,u =00nS5,, u' =0ons,}

' and satisfy (4.15) for all ve En(ﬂ). The strain energy theorem for the
f i " problem is

(4.17) Wn -%Jﬂ o:l.j(u) e:l.j(“) dx +%]s, ] v, uy ds = % Jﬂ ri uy dx

where the first equation defines the strain energy for the mixed problem.

[

The uniqueness of solutions wFE is an immediate corollary. Solutions
wvith prescribed ltt'.lltl or digplacements at infinity will be defined by
(2.9) and (2.10), respectively, as in the surface tractions problem.
‘ Moreover, the strain energy theorem, Theorem 3.4, extends to solutions
‘ wLFE of the mixed problem. 1In fact, the same proof 1is valid because if

u€ z:“(ﬂ) and ¢ € C(R) then v = ¢u € EX(@) = E (D) N E°(Q). The

uniqueness of solutions wLFE of the mixed problem with prescribed dis-
placements at infinity is an immediate corollary. It can also be showm
that the displacement fields for the mixed problem are unique except in
the special case of the pure surface tractions. boundary condition (S, =3Q).
Inhomogeneous Bodies. The uniqueness and energy theorems given.
above remain valid if the constant stress strain tensor c:ljk!. is replaced
by a field ¢ “u(x) that is Lebesgue measurable in Q and satisfies (1.9).
The interior and boundary regularity theorems of section 2 are valid
when ¢ :ljk!.(x) has suﬁficient differentiability in 0 and {, respectively;
cf. [1, p. 132}].

n-Dimensional Problems. Fichera (5] has developed his theory for

an n-dimensional generalization of the equations of elastostatics. All of

the theorems given above extend to this n-dimensional problem with only
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notational changes. The cases n = 1 and n = 2 are applicable to elasto-

static fields that are functions of only one or two of the Cartesian oo
coordinates. .
|
{
1
~|
[9
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5. A DISCUSSION OF RELATED LITERATURE

Fichera's pa.per (4] of 1950 provided the first significaxit: sxten-
sion of ntt;hhoff 's uniqueness theorem to unbounded domains. His result
(3.8) implies that equilibrium fields in homozeceous isotropic bodies in
exterior domains have finite energy if the displacements vanish at
infinity. The uniqueness of equilibrium fields in such bodies is an
immediate corollary. Corresponding results for fields wﬁose stresses
vanish at infinity follow from the 1961 result (3.9) of Gurtin and
Sternberg [10]. The author knows of no general uniqueness results for
anisotropic bodies in exterior domains or for bodies whose boundary is
unbounded.

In Fichera's monograph [S] of 1965 the existence and uniqueness
of claasical solutions to elastostatic equilibrium problems in bounded
domains with smooth boundaries is proved by the methods of functional
analysis. This provides an slternative to the classical integral equa-
tion methods cited in the introduction. However, the formulation and
techniques employed by Fichera can provide more general results.
Fichera's semi-weak solutions (Lecture 7) are essentially the solutions
wFE of this paper. Hence, Fichera's results (Lectures 7 and 12) imply
the uniqueness of solutions wFE for bounded dozains and boundary condi-
tions for which Xorn's inequality is valid. For the zero surface dis-
placements problem the inequality holds for every bounded domain. For

the zero surface tractions problem it holds for domains with the cone
property.

41




The literature on uniqueness theorems in linear elastostatics up

s

to 1970 was surveyed in a monograph by R. J. Knopé and L. E. Payne [13]

published in 1971. This work also contains uniqueness theorems for a

class of weak solutions. However, the hypothesis that the displacement

J . . fields are continuous in {! restricts the scope of thesg results. '
Uniqueness theorems for plane crack problems were proved by

J. K. Knowles and T. A. Pucik in 1973 [14] under the assumption that the

displacements are bounded, but not necessafily continuous, at the crack

I

tips. The elegant differential inequality method used in this work
provided the insﬁitation for the proof of Theorem 3.4.
The‘methods employed in this paper to prove uniqueness theorems
i for solutions WLFE in arbitrary domains were introduced by the author
ff during the period 1962-64 in a series of papers on boundary value
problems of the theory of wave propagation [25, 26, 27]. The article
[27]) contains as a special case uniqueness theorems for elastodynamic

problems in arbitrary domains.
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PART IV
COMPLETENESS OF THE EIGEN FUNCTIONS FOR
GRIFFITH CRACKS IN PLATES OF FINITE THICKNESS
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Introduction.

E.S. Folias [1] has constructed the displacement and stress fields
near a Griffith crack as an expansion in eigenfunctions. The eigen-
functions were derived by an operational method due to Luré [2] and the
question of completeness arises. The purpose of this report is to
prove the completeness by a constructive method. The method employed
is to solve the boundary value problem by Fourier analysis and to
evaluate the reéulting i.ﬁtegrals as residue series. The temms in these

series are precisely the eigenfunctions used by Folias.
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Notation. A
A system of Cartesian coordinates (x,y,z) is used. The plate
occupies the region defined by
w<x<o®, w<y<w, 6 -h<z<h

The crack is defined by

-c<x<c, y=0, -h<z<h




The components of the displacement field in the stressed plate are

u(x,y,z) , vx,y,z) , w(x,y,z)

The corresponding stress tensor components are
]

ov aw) + 26 Ju

= 1 (U
ax )‘(K-o- +

3y oz x
TXYSG(%;‘+-§¥) =Tyx
szBG(%"iJ'*g%j = Ty
oy=x(g—:+g_;’+g_‘z‘i) +ZGg—;'-
Tyng(%}*'g_‘; sty

Ju ., v . W ow
Oz k(ﬁ*w*a—i “‘ZG"a—z-

The displacement field satisfies the field equations

du ., v W,
Fr

aw.
_2.+-7+‘—z.+a W(§+-§y+-a—z.) =0

2 R
dw  d'w  w 28(3u av+8w_o

3x  dy 2z

where a2 = Z%Q . The boundary conditions are
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txy=0,rzy=0,oy=-oo for c<x<c, y=0¢, |z] <h
= 2 2

u,v,w = 0(1) for x“+y“ =+, |z] <h

Syrmetries.
x y

u(x,y,z) odd even even
v(x,Y,z) even odd even
w(X,y,2) : even even

If follows from the symmetries that

v=0,ﬂ=0,%‘zl=0 for |x]>c,y_=0, |z <h
for |x| >c’, y=0, |z]<h
whence

.. =0, t_=0 for |x|>c, y=0, |z|]<h

Moreover, if




v (x,0,2) = €+0 u(x,ie,z) .
etc.

[u] (x,0,2) = u'(x,0,2) - U (x,0,2)

then

.
[%%=g~lz’ =0 for =<x<», |z|<h

[u]

[w] = [ax]..[a“’]_o for-oo<x<e°, |z] €h r even in y

[g—;,’]=0 for < x<w, |z] <h)|
while
[ ] = ) [v] = 2v' , etc.} odd iny

Note: these vanish at points of continuity.

Application of the Fourier Transform in x and y .

Define

L. -]
~ 1 -i
80,7,23 = =2 j e 1P u(x,y,2)dx
@ |

etc,

i(p,q,2) = : 1/2 J e'iqy a,y,2)d
(211') »Y» y

:’
&“——-8

j -1Ex*Y) y(x,y,2)dxdy

etc.




However, u,v,w and their derivatives may have discontinuities across
 the crack. Note that, if £()(y) e LL®) for k= 0,1,2 and
fec’®)nc’®) and £(0t) , £'(0f) are finite

) e 1 (yyay

5‘-%0

~ 1
£ = +
£') (@ (2—“)1/2 (!)
: o . 0- ra
| L ) 4 + o i -1qy ;
iy €Y ] e f(y)]_~+1q_le £0)4y)

= - {'j'l)l/z + iq %(QJ
1

and hence

~ f' ' . ~
3l = - + f'
£ @ 'LJ'](Z“) 2*ia () @

- - lf']

2 ~
- i - £
(2m) 1/2 * /2 T

(2m)

These results and the symmetries (p. 3) inply




o
U\~ _ .~ !
| T
I azu 1/2,3 2~ " ;i
i ('37 (,,) ( -q u ((3— ‘= ( ) (p,0+,2)) '

! _ y

etc.

a -~ ~N . -~
(-5;,1) = - (%)l/zvo*-lqv

2 . e
3 .2 -

Ep --u iy -dy
4 .

& =iaw

1/2 3w " 2 ~ ?

( )="(.") (ay)o-q W |

Taking the Fourier transform of the field equations (p. 2) and using the

above results gives

2~ | ) - .
:—%-pzu - (,,)1/2 +r=l(pu-pqv-lp(,,)l/2 cipPH =0
Z
2,. -

~ ~ ~ ~ 2~ . ~
:—[-pzv-qzv-m( 1/2 +az(-mu-q v-lq(é)l/zvo+1q§‘zi)=0
Z
v 2= 172wy 1/2 av . 4%
- et - +a(1p3—+1q - GV - SH - 0

or




o L —
o :'Z!
7 |
2~ ' i
gy - @ i~ i e o - 1 ) - BVAGY v 1p ¥ Ty
& 2. 2~ 2. 1/2, 2~ a
;;z-(p+q)v-aq(pu+qv-1 )-() 1qV*1qa vol
ava’) 5 (p+q)w+1a(pa;+qa—)-c,,)1’2 azcg‘;n
Note that
f(x) is even o= %(p) is even and
fp) = Y2 f cos px £(x)dz = F_£(p)
0
f(x) = (_")1/Z f cos px"f‘l(p)dp
0
while

£(x) is odd = £(p) is odd and

f(p) = -i (ﬂ)lﬁ I sin px f(x)dz = -i st(p)
0

f(x) =1 (1’)1/2 I sin px f(p)dp = (")1/2 I sin px F f(p)dp
0 0 1

The analogous formulas are valid for functions of y . Hence the

symetries, p. 3, imply




U=-ilU, v=-iV, weW

where U, V , W are real-valued. In fact,

sin px cos qy u(x,y,z)dxdy

(]

[}
ETLY
o-—8
ov——8

cos px sin qy v(x,y,z)dxdy

<
"
Al
o— 8
o—8

W= % COs pX Cos qy w(){,y,z)dxdy

ot—— 8
o— 8

-~ -~ -~

Hence the differential equations for u, v, w on p. 7 are equivalent

to

2

/2. (3u
[P - P Fe¥o]

:—z—l}-azp%‘%-azp(pmqw- © + ahyu
Z

&

2

'
I —"é‘z’ -afq - dfapusan - 0+ v = BY2- asahiaryy)

d

£ 20d% , 2, dU, AV, | 2. 2. M2 Bw . 2. BV
‘; (1*3)3;2'*3 Prptagy - +a W=D [Fc(sy)o*a*'c(gz-)ol
>
‘? This can be written as a 2nd order 3 x 3 matrix system of ODE's,
a1
s
namely
!
; (] , , u Fl
}; LVl - @ +q7) |V] =|F,

L]
=
=
e ]
(7]

(3, S




where, if U= cu,v,w)T (T = transpose)

d%"'BE"w

1 0 0
A=|0 1 0

0 1+a

0 0 -a'p
B=10 0 -aq

2 2

ap aq 0

Note that

It follows that L is formally selfadjoint with respect to the scalar
product

In fact, integration by parts gives




z
2
(U,LV)'-I (UTAV“+UTBV'+UTCV)dz
Z
1

2 z2
2
AV + 0T BV [ OTAv + 0T BV - ¢ Dz
z1 z
1

Z

2
«TAT - TAv. T

5
22
+I @TAa-0Ts+0T¢) Vaz

2

z z2

z T
- [0,7] +[ @0 + BT + c YT ¥ az
,21 zl

OV =0 AV -0TAv.0TBY
If the index notation
T T
U= U;,0,,Uy) K Ve (V)sV5V3)

is used the bilinear form [U,V] can be written
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[O,V] = UV] + UVy + (1+a2)usv3

. ) i
‘ - UV, - Uy, - (a9 i

r' o2 2 2 2
a pU]_V..s -a ql.JzV3 +a pU:,,V1 +a qU:,,V2

. Boundary Conditions Associated with L .
‘ The symmetry properties of the displacement field wrt z (p. 3)
"imply that

GDam0 = 0 » (%)z-o =0, (=0

N It follows that

O .o, MO .o, wo)=o

B.C.1 Ui(O) =0, Ué(O) =0, US(O) = 0
is selfadjoint for L ; i.e.
U and V satisfy B.C.1 =~ [U’V]z-o =0

The B.C.'s at z = th imply corresponding B.C.'s for U . To write
then note that (p. 6)




-~

- ———

- e -
RS < A

L 4

= - 1'—.\ § - T—
balagall ), SV SN -7 S SR

T m G W = i6E - W

GEY + iq® = -1 Gy - a W)

Al
L}

Yz

A(ipu+iq vV - (—)1/Z

Qe
]

+%)+ZG%

ApU+av « 0+ 20 & - AV,

2
a‘+l dW] (_) 1/ 2,

sA[pU-qu#- 0
since
26 26 2G al+l
S A SR v Y
a-

i, m -Zaz-m, m(az-l)-Za2

n_Zaz Agaz-l m,_Zza_E_
2 ’ z 4 -]
a"-1 i m a+l

It follows that
du dv
_d(ihl'pw(h)'o’jgzm"qw(h)'o

2 ~
P UM +a V) + &5 W) . G2 v m)

Note that




B.C.2 Ui(h) -p Usﬂl) =0, Ui(h) -q US(h) =0
a2+1
p Ulfh) +q Uy(h) + 7—11’3(}1) =0
a -

is also selfadjoint for L . In fact, if U and V satisfy B.C.2 then

2
(071, = P UpVs * a UpVs - (1005 (@ Vy * a Vp)
2 .
-P U3V1 -q 03V2 + (a®-1) (p Ul +q Uz)V3
2 2 2 2
- apU1V3 -a"q UV + ap UV; +a"q UV, =0

BV Problem for U= (U),U,,U" = w,v, ;" .

LU - (p2+q2)U=F, 0<z<h
MOU(O) + NOU' =0
MO(h) + NhU' (h) = Gh)

where

- uy, _ .2 -
Fs(a—o pa FC Vo

F(z) = (%)1/ 2. (1+az) q Fc Vo

w 2, OV
L Fc('é?)o + aF (57 )
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0 0 -p- 1 0 ]
M =10 0 -q = 1 0
| h ;Y 0
0 0 0 a“+1
az-l
and
!. _ 0
Gh) = ]
1 (2,172
L @7 F v < |
. Method of Solving the BV Problem for U,V,W . |
To solve the BV problem the general solution of LU - (pz + qZ)U =F

and BC at z =0 will be constructed as a function of the parameters

uy = U(0) , v = V(0) , w6=dawzﬂl

The B.C.'s at z = h will then be used to calculate U > Voo w(') .
% |

Solutions of the Equations L U - (p2 + <E)U =0 .

This equation, written in terms of components (Ul’UZ’UZ’») = (u,v,W) ,
; is obtained from the system on p.8 by setting the right-hand side equal
i to O . Note that this system coincides with Luré, p. 150 (3.2.12)

under the correspondence

ciUey, -iVey, Wery '

PP

ip(-10) + 1q-iV) + P =pU+qV+ o

Tl WV
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Luré€ has given a complete solution of the system L U = (p2 + qz)ﬁ in

equation (3.2.15), (3.2.17). To adapt them to the present notation write
2epleq®, s=/pPeat>0, D=is |

i sinh sz

cos 2D = cos isz = cosh :z , sin 2D = sin isz

Then the solution (3.2.15) becomes 1

zzsinhsz

U = (cosh sz)y, + 2’2— S (quo + pavy + pwj)

a2 z sinh sz

: 2
V = (cosh sz)vo M (pqu0 +*qvy ¢+ qwb)

W= Sinh sz ., a’ (sinh sz
s

ot T S -~ z zosh sz) (pu0 *qvy + w('))

This solution satisfies B.C.1 at z = 0 . The solution (3.2.17) becomes

u= s_m_l;‘& up * " (:zzﬂ) é in:z,sz + 2 cizl}sz) (pzu(') *+pavy + ps wy)
V= sin]s\ sz vy + 2(:22*_1) -sir-ﬂs)ﬁ‘”sz + 2 co:;'\ sz ) (pauy + qu + qsty)
W = (cosh sz)w0 - azz 2 Sigh Sz (pu6 + qv6 + szwo)

2(a"+1)
ThlS solution sa1l:isfies
B.C.1' uy =0, vy =0, 0.,

and

. du(o - dv(o -
uy = L Vo m T ¥ O

"»-—'"J - .-
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Solution Basis for LU = (pz + qz)ﬁ .

« ' u0=_1, v0=w6=0 gives

(ut) rcoshsz+-2————s——-.p

2 R
a” z sinh sz
| v T s ™
; a2 sinh sz
) {Wl‘ L (——s—--;coshsz)pJ
u0=0, v0=1, w6=0 gives '
2 .
2 a” z sinh sz 3
2 .
2| _ a” 2z sinh sz 2
' A = coshsz+-2— —Aq
| | a2 sinh sz
" LWZ‘ kT(—'T_"Z cosh sz)q |
B : uy=vo=0, wy=1 gives
3
2 .
' \ 1 a” z sinh sz \
! , [ v 7 )
. |
» } v = a’ z sinh sz
’J 2z s
> |
X : . 2 .
} stg L.S_lr_ﬂ_sl_iz.+a (.sths_.s_g.-zcoshsz)‘

i

Similarly

u(')-l, v(')-o, w0-=0 gives

.
eI

Nl

i
)
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! 2 Z
. U4 \ r sinh sz + 32 (z cosh sz - M)EZ.T
5 2(a"+1) > s
vl o= -—igi—— (z cosh sz - S SZ)R§
2(a“+1) s
Wt - a22 Ly J
) 2@~ °
u6=O,V6=1, w0=0gives
(0 ) { ;a.zz__ (z cosh sz - 3 sz)%w
2(a"™+1) s
. 2
vs sinh sz a sinh sz
- + (z cosh sz - )
| S 2@50) S 37
2 .
ws | _ %! 2 sinh sz q
‘ ‘ a(a +1) S J
u6=v6=0’w0=1 gives
2 »
;6 3 r a sinh sz
) ——— (2 cosh sz ) p)
a(a™1) >
2 -
6 a sinh sz
V? | = | —5— (z cosh sz ) q
2(a®+1) >
{ WP cosh sz - _T__az sz sinh sz
J \ 2(a®+1) ‘

It is evident from the B.C. at z = 0 that these six solutions are
linearly independent and hence span the solution space of

LU= (p%+qd0.

Solutions of LU - (p° + ¢2)T = F(z) .

The variation of constants formula will be used. For this purpose
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it is convenient to write the equation as a 1lst order system. The

equation has the form

where

AT'+BU' - CO=F

r 2, aZpZ azpq
Cs=szl-C= azpq %+
| 0 0
Now AT = A>1, whence
(1
AV 2 /2 GU2T |
| 0

1

T+ A V2 g - p7V2 c U=A

-1/2 F

l+a




Then

or

where

Explicitly,

T=a27.|v

\ vs/ {+a J

\711 + (A'l/z B A-l/Z)\—,. - (A-I/Z CS A"l/z)v—= A~1/2 r

Vi s B, - Ca V=3

o a2 o ,-1/2 T
BA A BA = - BA
L 172 -1/2 T
CA A C3 A = CA
T =AYy
0 0 -p
a2
B, = 0 0 -
A 2112251/2 a
p q Y
(s + a%p? a’pq 0
CA = azpq s + azqz 0
J 0 0 1+az

19
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A 1st order system equivalent to the above 2nd order system may be -

obtained by setting

3]
n
<l

Y=V,

-h-d

Then

! = = A =V = .
Y Viez, 2=V BAZ+CAY+C'
and
[O 1 ] [0]
X' = X+
CA -BA G
or
' 0
X=MX+H(z),H=(E)
where

0 1
M =
Co B

A fundamental matrix for X' =M X is a 0 x 6 matrix solution ¢(2z)

of

¢'(z) = M o(z)
$(0) =1

An explicit representation of ©¢(z) can be derived from the solution

basis for- LT = s°0 . Indeed, each solution W . (UJ vi Wj)'r of




b e -

i~ e
PR SRS

et

.
o s ————

!
H
'

-y
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LW - %P gives a solution W oof ¥ranw , namely

J VY (a2
Vj [ Al/z 'ﬁj ]

Thus, in view of the B.C.'sat z=0,

o(z) = O X2 (1+a®) VA0 x4 x5 (ea?) V23

M, M
ot v aradyMRs o v anad) Vs
vt vV ()Vys vt vy Vas
aahHl/a (VA2 W wadH/ad @RV HS W
ul v () Vs vt v () Vs
vl vir () VRS v v ()RS,
| @rad)VEAe ()Y a2 W Va4 (2 S W

where W, V', W are defined on pp. 16-17.
The fundamental matrix makes it possible to calculate a solution of

X' =MX+H, namely

A
X(z) = 8(z)" [ e1() HEa 3
0

Indeed,

-
X! & ¢(z)'f ¢'1(r,) H(z)dg + ¢(z) ¢'1(z) H(z) |
0 .

=MX+H ;

Moreover,




X1 Y -~ - ' .

22
X(@) =0

Thus the general solution of X' =M X + H is given by
. z i
X@) = ¢(2) Xy + o) [ o) HEw)ax |
0 _ :
The direct calculation of ‘b(;)'l is difficult, but note that if

E(z) = % X(2)T P X(2) | |
then X' =M X =
E'(z) = X(2)T P X'(2) = X(2)T M X(z) = 0

because

and hence
@07 - -

Thus E(z) = const. ¥ solutions of X' =M X . Take X(z2) = ¢(z) Xo
X, ¢ R® arbitrary). Then

2E(z) = (4(z) xo)T P o(z) X, = x'g o2)T P oz) Xy

= X3P Xy = 2E(0) %X, eRS

PX 0
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It follows that

O(z)TP@(z)-P ¥zeR

Since P is non-singular
e e P o) =1
M whence
o)t =Pl o)Tp
| Thus
. Z '
A ® X@ = 0(2) X, + 2@ [ 0T 2 HEIE
0

Solution of the B.V. Problem of p. 13.

Recall that

x= @) = @ U, axadY2u, 0 vy @iadH? upT

2)1/2 2,1/2

Xo = (ug vy (1+a wo vy (1+a

Thus the solution (*) satisfies B.C.1 (at z = () o= u6 = v6 =W, = 0.

w('))

Thus if we write
Z
X"(2) = 8(z) P’} [ o7 p HE)d
0

then substituting in (*) gives

.
H
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Uy (2) = 0, (2) uy '+ 03,(2) v + a2 0y awg + X (2)

U, (2) = 0,1 (2) Uy + 8y,(2) v, + (14 51/2

026(2) W *+ X(2)
a5 (2) = 051 (2) uy + 05,(2) vy + (+aD)2 0y () wp + X3(2)
or (see p. 21) if U'(2) = X2}, V(@) = K2, W) = aady V@),
U() = Ul(2) uy + UP(2) vy + UP(2) Wy + U"(2)
V() = V(@) uy + VA(@) vy + V() Wy ¢ V(@)
W(z) = W(z) ug + W (2) vy + W (2) Wy + W(z)

Thus (p. 15)

2 smh 54

2
. U(z) = (cosh sz) u + 92- (pzu0 *+ pav, + pw(')) + U"(z)

2 .

. 2 _.
5 _ W(z) = sm}; sz w(') . _az_ (sm}; sz

- Z cosh sz) (puO +tqvy *+ w(')) + W"(z)

To complete the solution of the B.V. problem of p. 13 the initial values
uo,vo,wb must be chosen so that the B.C.2 at z = h is satisfied. The

» | derivatives U' ,V.',W' are needed. They are given by

2
U'(z) = s(sinh sz)u, + EZ" (smh sz ; sz _cosh sz)(pzu * pavy + p ) + U (2)

-
L R

2 _.
V'(z) = s(sinh sz)vo . 92' (smh sz ; sz cosh 24 (pquo + qzvo + qw('J) + VI (2)

) _
W'(2) = (cosh sz)wl + 32- ( -sz sinh s2)(pu, + qvy + w)) + W' (2) "

Thus the B.C.2 (p. 13) gives

T Nl L T e T
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U'th) - p Wi

sinh sh ; "sh cosh” sh) (P ug + pav, . pwo)

. 2
= s(sinh sh)y, -2— (

smh sh pa (sinh sh
3

- P - h cosh sh) (puo +qug + w('))

+U' ) -pW(h) =0

V' (h) - q W(h)

2 .
= s(sinh sh)vo . gz_ (smh sh ; sh cosh sh) (pquo + qzv0 . qw('))
. 2 _.
sinh sh a” .sinh sh
-9 F 2w -_92- (2= - h cosh sh) (py, + Qv + W)

¢V ) -qW(h) =0

2
PUM +q V() + & W)
a -

2 .

= p(cosh sh)u, + %’l— h -S—l-llhs—Sh- (pzuo *+ pqvy + pwy)
2

+ q(cosh sh)v0 + 92— ]_1_5__1111_53 (pqu + qzvo + qwo)

2
+ (—z—) (cosh sh)w' + (32:-1-) (-sh sinh sh) (pu +qvg + w('))

s p U + q V') + (3"1) Wrm = Y2 v,m
This is a system of linear equations for uo,vo,w6 of the form
dygug + dygvg + dy¥g = HE (= U M) + p W)

dyqtiy * dgaVg * dp¥p = £, (= VT (W) + q Wm)

dyyp * dygvg + dsgy = E3@a) (= -p UTR) - VI CH) - & +1)W"'(h)

+(_n)

1/ 2“

Vo))
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where

, .22 .22 '
: d); = s(sinh sh) + 5B (sinh sh + sh cosh sh) - %g— (sinh sh - sh cosh sh)
. 22
= s(sinh sh) + a"p” h cosh sh

; d a2 smh sh

127 P

2 sy .
+hcoshsh)-§2- pq(s—ulhs—-sﬁ

- h cosh sh)
2
= a"pq h cosh sh

2 .
. a sinh sh
d13 Tp( s

2 .
+ h cosh sh) - Rsinh sh - 2 p (51“'; sh _ h cosh sh)

smh sh

a ph cosh sh - p =——

a2

' dn =7 ¥ E—

2

smh sh , h cosh sh) - 32- Pa (imi_:—sL - h cosh sh)

a’pah cosh sh = d,,

smh sh 2

a2
+ h cosh sh) -5 q

.2 .
22 = S(sizh sh) + 3 ¢ (Ehsh G sh .y cosh sh)

[«9
i

s(sinh sh)'+ azq2 h cosh sh

2

;é : d23--az- q(51n25h+hcoshsh)-qs—m}s’—-sll--92- q(-s—lﬂs‘—-sﬁ-hcoshsh)

N '

v = - gsinh sh + azqh cosh sh

‘rj

“ 2 2 2 2 ]
2 d31-pcoshsh+-§2- psg-sinhsh-l-éz- pqz-]lsmhsh- (a"l)-z-shp sinh sh

-~
AT ™

2
= p cosh sh + (_az_ psh - (a +1) psh) sinh sh

2 2
= p cosh sh+-az- psh (-—zz—) sinh sh = p cosh sh-—g-—p sh sinh sh
a’- a-1

P34
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2 . 2 . 2
dsz"aT pzq]}-—si—gh—?l‘wqcoshsh-t-az- q3.hs;usxhsh (3*1)-2- sh q sinh sh

2 2
-qcoshsh+%- qshsinhsh--az- (a+1) qsh sinh sh

2 -
= q cosh sh + 32- qsh sinh sh (7-:;)
a -

| 2
= q cosh sh - —— qgsh sinh sh
a -1

2 - 2 . 2 2,, .2
dyy =5 pthsimhsh, 2 2hsithsh, 2+l copsh - @Yy 20 hs sinh sh
a-1

S az-l

2 2 2
a . a a +1 a+l
= sh sinh sh - ( ) sh sinh sh + cosh sh
=z 7 a%-1
= (—i—z—] %2- sh sinh sh + azﬂ cosh sh
a-1 a -1

a2+ az
s cosh sh - - sh sinh sh
-1 a“-1

The Cofactors of Q = (djk_)__._
Let QJk = (COfQ)jk

=d,d,. - d,,d23

Q3 = 922933 - 432

2 2
= (s sinh sh + azqzh cosh sh)(iz——- cosh sh - —-2——- sh sinh s)
-1

2
+ (q cosh sh - —g—- q sh sinh s) +3 5 sinh sh - azqh cosh sh)
a-1

= —}— [(az+1)s sinh cosh - azszh s:i.nh2 + (a2+1)a2q2h cosh2 - a4q2hzs sinh cos
a“-1

2
+ qz[%- sinh cosh - azh cosh T" h s.mh2 *Th s sinh cosh]

2 2 2
((a “'1!3)\92}[ a qzh) cosh + (a szh +aa Zh) Slnh
2 4 22
+ (a2+1 - 2 ons + i' + —-g;-h—i) sinh cosh

-1 az-l s




~

-

2, .2, 2 2,2 2 2
= a%¢’n —-z"'-'-—cosh2 - ﬂ;_’:ﬂ_)ﬂ sinh? + 305 “ZU *P_ sinh cosh
2l s 532 I
. , . 2
- az(sz+q2)h +22°q"h - a”(s"+q")h cosh? + a“(s"+q") + p sinh cosh
) a:-l2 ) az-l ) s(az-l)
" 2.2,....2
-2(qJh _2aph 2"coshzsh+za(s*})*1’ sinh 2sh
a“-1 a“-1 s(a®-1)
Q2 = - (Apd33 - d51d53) = d5ydys - dyydss

2
(® cosh - —3— psh sinh)(- 4 sinh + a’gh cosh)
a“-1

2 2
(azpqh cosh) (-'Ez-*-'l cosh - —g—— sh sinh)

a-1 a-1
‘al 4 2
= - ? sinh cosh + a’pgh cosh? + %ﬁpi sinh? - :a—fgs—lh— sinh cosh
a2 a2+1 2 a4 shz
- —%—l pgh cosh”™ + —-%— sinh cosh
a"-1 : a

-1
2 2 4 2
_ a?g;l . (azpqh+ a;gh _ (a+a )mh) coshz
a - a“-1 a“~1

(- Eg) sinh cosh

+

2 2 '
a h+ 2 1 a+1 2 Pq .

= -—F— a’pgh (1 + —-— - =) cosh” - sinh cosh
a‘-1 a1  a‘-1 s

2 2
. 2;2921& - 3_3;31.‘1 cosh®sh - B sinh 2sh

d d,,d

Q3 = d593; - 45395
2

= (azpqh cosh) (q cosh - —;— q sh sinh)
a"-1

az 2
- (p cosh - —— psh sinh)(s sinh + a qzh cosh)
a-1
> 4
= (cosh - —§—— sh sinh) (-ps sinh)
a-1

at 2 2
= —y— phs” sinh” sh - ps sinh sh cosh sh
a"-1
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2 2 '
- —g—— phs:Z + —;’-— phsz cosh? sh - st- sinh 2sh
a -1 a-1

Qg = = (d3d55 - dgd;5) = dypdyg - dygdysg

a2
(q cosh - T qsh sinh) (a ph cosh - p 511"h)

2 2
(a pqh cosh) (-2— cosh - 'T" sh sinh)
-1
4 2 2

a’pqh cosh? - El sinh cosh - 9—2?-5:’}‘— sinh cosh + 1%5& sinh?
a-1 a"-1
2,2

4 .2
ﬂ%ﬂ‘m cosh® + g_gg_h_s_ sinh cosh

a’-1 -1

2
-_}H._a + (apqh-f—?— a a+1) h) COSh
a

-1 a“-1

+

(- %) sinh cosh
- azzggh - azph coshz sh - ? sinh 2sh = Q,,
a1 a‘1 s ,

= dyydy3 - dsydy4

2 2
= (s sinh + azpzh cosh) (9-211- cosh - —g-— sh sinh)
a-1 a -1

a2 - 2
- (p cosh - - psh sinh) (a“ph cosh - P— sinh)
a“-1

2
= —-&z——)—s 2*1) sinh cosh - 2 Szh s1nh + ——(—Z—-P—a 2 +1) “n cosh?

a’-1 a“-1
2 4 2.2 2
a’p’h cosh?® + E- sinh cosh + -a—-El—SIL sinh cosh - 2 n sinh?
a“-1 a“-1

2,2, 2 2,.2
- 205 2P Micosh? 1) + @EL202 % . a%p?h) cosh?
- a”-1

a-1
2 2
(s—(:?-f‘l-%—)sinhcosh '
2,2 2 T2 2.2
a +s)h 2h (a"+1)p2 2 s 2
__(PZ_—)"" a (—T)-L-p --—;-L-)cosh
a-l a“-1 a-1

42

+

o o
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2.2
RO VRS S O | R
2
42 zs(a-l) 2.2 2 2.2
_Lzz_l.*s h. 20k cosh? sh + —-RZLS—a (s’ sinh 2sh
a“-1 a-1 2s(a”®-1)

Q3 = - (d)yd5p - dgydy)) = dgydy, - dpydy
'a2 22
= (cosh - —— sh sinh) (a“p“qh cosh)
a-1
L2
- q (s sinh + azpzh cosh) (cosh - —g—— sh sinh)
a-l

2
= (cosh - -g— sh sinh) (- gs sinh)

a"-1
2.2
= .~ qs sinh cosh+i—§—9h51nhz

-1

i 2.2 2.2

! ' igqh»«agghcosh sh - L sinh 2sh
a-1 a-1

Qg = dypdys - dpodys
= (azpqh cosh) (? %sinh + azqh cosh)
i | . 22 2 P et
- (s sinh + a“q"h cosh)(a ph cosh - S sinh)

! - azphs sinh cosh + p si.nh2

2
= -p + p cosh’ sh - 2B sinh 2sh

~

-

~—— A

Qg = - (4pdp5 - dpdy3) = 21“13 12 23

o --
[ - P)

= (azpqh cosh) (azph cosh - g smh)
¥ ]
- (a®pah cosh) ( % sinh + a’qh cosh)

-
o e e,




= _(azpqh cosh) (azh(p-q) cosh +9§R sinh)

= _(,azpqh cosh sh) (p-q) (a?h cosh - % sinh)

Q3 = dy1d5; - 499y,

(s sinh + azpzh cosh) (s sinh + a2

qzh cosh) - adpzqzh2 c:osh2

)

= sz si.nh2 + (azpzsh + azqzsh) sinh cos}i

2

s2 sinh”™ sh + azssh sinh sh cosh sh

Q] = det(djk) can be calculated from Luré, p. 153 and the correspondence
(see p. 14)
; ip‘-’cxl, iq‘-’az, is =D
i This gives
' 2 . 33 s sin 2ish
, ll . IQ| = 2a"h(is) sin(ish) (1 + ——TEK—)
'
- = 72%h 3 o3 sinh 2sh
2a”h s” sinh sh (1+_—2—ST_—)
>
'.’ Solution of the System on p. 25. We can solve by means of the relations.

3
| kzl Qjdke = 1Q185,
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. )
1Q] up = Q) + Qpf, + Qg f5

J i,
™) |l vp = Qp,f) + Quf, *+ Qu,f;

L1Q1 Wy = Qaf) + Qsf, *+ Qs

The only real zero of [Q(s)| is at s = »’pi+q2 =0 . Thus
¥ real (p,q) t (0,0)
3. %1@,% (p,q)

UO(P,Q) = jZl TxQ(S)l

3. Q;, (P, )£, (p,q)
= 12 J
VO (p’q) J'Zl IQ(S) l

3. Q3,a)%;(p,)

Wy (p,9) = jzl QG)]

Substituting for uo,vo,w(') in the equations on p. 24 gives
u@,q,2) , V(,a,2) , W(p,q,2)

Residue Series Representation for u(p,y,z) , v(p,y,z) , w(p,y,z) .

The equations on pp. 4-8 give

0 -1 iyq § -1 iyq
u(P,y,z) 2 l e’ u(p,q,2)dq (/2 l e”’" U(p,q,2)dq

;(p,Y,Z) = '(—2;;31177 J ei}'q V(p,q,z)dq

“@y2) = Ly [ M We,a,n4

(2m) A
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In particular,

u(p,q,0) = (2—“;177 [ e uy,010

L]

v(p.y,0) = Efr—;m J el¥d vo®,a)dq

w(p.y,0) - _1 . [ . iyq .,
: az (2‘"‘)—1/2 Je . WO(P»C{)dq

Now the equations on p. 32 and p. 24 give U,V,W,uo,vo,w('] as meromorphic
functions of q for each fixed p . Thus residue series for the above
functions can be obtained by deforming the contour in the upper half of
the q-plane for y > 0 (lower half for y < 0). The poles of the
integrals U,...,w(') are the zeros of |Q(s)| . The cofactors ij(p,q)
are holomorphic in the g-plane. Examinations of the formulas for
U",V'",W1r and fj (p,q) shows that these functions are analytic everywhere

except at s = 0 , because pl= 0(5'2) . Thus special care is

necessary in calculating the residue at s =0 (q = ti|p|) .

Zeros of |Q(s)| .

There are two families of zeros

1) sinh sh = -i sin(ish) = 0 *=* ish = isnh =nar, n=0,1,2,

Thus

e B R R e G i

= 6 @D, ay =i Al =i el

qp = i lpl




vl

-
. - -

3

These are simple zeros of |Q(s)| for n>1 . However

IRGs)| = 0sYy , s+o0

@ + )% = @ - ilph2@ * ilph? ~ @ilph’@ - ilph?

Thus q, is, in general, a higher-order pole.

sin 2sh _ , _ ; sin'2ish _ _.  2ish + sin 2ish, _
2) 1+ =>Fgm =l - 150g = -1 g ) =0

= 2ish = Zisvh = Zth hand s, = 42+qu = -ti

Peage- g, gm0t g i

Calculation of F(z) .

F(z) is defined on p. 13. Nowon y = 0t

= qrou . 3y o

gt o

Tzy y

ouy  _ u(x,0+,z) _ _ oV
&P, 5 G2,

Q W
Fsbo = - Fsxdog = *PF. Yy

ow v
FeGyo = - Feli2do
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GV @) = p a-aD) F oy,
GYIF ) = -q (+ad) F Ly,

@Y% = - a-ad) F, §D,

Calculation of U",V”,WH,U"',V"{l,"' .

From pp. 18-19.

[0 0 )
H(z) = =
;Eca-] [

‘i ; 0] {0 ] = ]
PH(Z) = =
0 -1} (G |-G(z)

Write

o112 «»lz(z)}

[} =
® [@21(2) )

! Then

. . ¢11’I‘(;) ‘ q,211'01)
. *°(2) = | 121 22T
(9] - (4]

f Hence
. 11T 211']

T, | ®
o' (x) PH(R) = 17T 0221

C el gy [oAT
ploefPu~-|* 22T
o -1 (¢*7g

L SN

o .
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o(z) Pl eT(x) PHE)

ru ) olz(z)] [- c;lom(c)é'(c)]

0?liz)  #%%(y) +*2T ()8 ()
{-@n @ TRt + elz(z)oZZT(c)C(c)}
O Bl (1 SRR O L (3143

Thus (pp.23-24)

") = U@,V @, @)7 = V200,28 35T

] |
- [ a2 ) - MR e Vo
0 .

A V21 5y o @d5%0a

A—l/ 2 ¢12 53

2) = @TT)A V2

QZIT(;) - Al/z(Ul'ﬁ g ,)A-I/Z)T - A-l/Z(ﬁ].Uz,ﬁ&)TAl/Z

¢22T(C) = (Al/z(ﬁ4| "Svﬂsc )A‘I/Z)T - A‘l/Z(U4lU5|ﬁ'3| )TAI/Z

A Y220 T V2 = @ @ @F @A @ @ @0 @)
52+a2q2' _'azpq 0
V22 1 g sealp? o |=ct
A s (1+a") 2 2
o . 0 s”(1+a%)

V2 )P T a2 - @ @ @0 @)e; O @ @0 @'

Put

Y
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M @) = CRTPET@) , he) = ClePe)

Then
Z
U@ = [ 0y " - 5o o
0
T @) = @A M@ - @™ Feo)
2 ' T
. £ o a7 - mEocm o Fox
Similarly, .

T 2) = AT 20T

Z

- [ K Y26P@eP ) - 0P Rt Tea 2 Foya
0

K'Y 22232 (a2 o @ ()T ()T @)A @ )T T @)T

A V2 L T (a2 - @l @02 @1 @)a Y2 2@ @ @t @)

Z

@ - [ e hgT@ - o o) Fo
0

T(2) = (@AM @" - mE)C My ") F)

2
+ [ opa @ - mac@h Fea o
0

AT @) + BU"@) - ¢ I"(2) = A @A M @7 - M) @) Feo)
=1




Lo
i, TSR P - s

Pt 3 8

An alternative derivation is as follows.
Try U'(2) = M (2)T,(2) + My(2)T; (2)
T (2) = Mi(zjtfz(z) + My(2)C, (2)
+ hilci)CQ(Z) + Mz(i)Ci(Z) «set =0
U™ (2) = ncl'(é)tfzcz) * M(2)T) (2)

+ M{ (2)T3(2) + My(2)T} (2)

AT™+ BT - c T = AM(2)Ty(z) + A M (2)T}(2) = F(2)
- ,

M, (2)T5(2) + My(2)C(2) = 0

M} (2)Cy(2) + My(2)T}(2) = A1 F(2)
or

vt ® ) (o 0

| [Ulv'ﬁzv & ohoh tr3-] [CJ "[A'lr]

or
' 0
Yo [%] ] [A'lr]

Note that

ot (a}/2 0 ] o°.) A"1/2 0
(= 0 R7E

38
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Thus (p. 22)
AV Y2
P= S
0 -1
I R N N R e 2cs}\'ll Z o)(al/2 A
Mo avYt@ |, an 0 ) (a2 P a2

; IS -1/2 -1/2
| A 0 C 0 A 0
' 0, +T|" s 0

= ¢ ¢

g AV 0
i |
A2 o) (aY2 0Y (c. o
P =5
o AY3 | o AYE |0 -a
o 0) c 0
<pO(ZJT[ S ¢0(z) - { s }
0 -A 0 -A
or
o ¢l o), gfce ©
@(z)'l-[s _1¢(z)[5 .
0o - o -a

Applying this to the system on p. 38 gives

! z (z)1(C! [ O
ol b wol)  boa

(9} My(z) M (2)

ri c! o”@(z) T (2) [cs .o][ o]
g Lo AYMe w@lo Al
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‘ @] o Y |- wTo Fo

[- c;lmfcz) F(2)

A”IMiT(z) F(2)

. z .
U@ = [ oy - wechs ) Foe
0

C 0
QO ( z)T [ ] ¢0 (2)
0 -A

| M3 (2) MiT(z)] [cs o] [Mz(z) Ml(z)} [cs o}
lM}'(Z) MiT(z) 0 -A) M(z) M(2) 0 -A

B s

. R T
| G M fe CMy
T M T ey -ag
: T, T T T
o rMchMZ - M A M2csM1 -M AMJ'.
L T T T T
§ MiCM, - My Ay MCM) - M A
b
C 0
| o]
J o0 - "
! !
.? ; Calcplation‘of ‘Coefficients in the Residue Series.
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f)

M, (p,q,2) = v
W

The Poles q, = 1»62 2

1

V4

=}

5,.1,
% < 9

- 3
Sh ia),

S

vt o
» M (p,q,2) = vy

3

Wow W

n=1,2,3... (0 = T

= 3 = = 2 (- n
cosh snh = Cos 1snh cosh a nh cos nr = (-1)

sinh snh = -j sin isnh = -jsinnm=20

M, (p,q,,h) =

- My (p,q,h) =

M (p,q,,h) =

[ n a’h n)
(-1 0 -1
) +2(a +1)( )
2
. a hqn .
0 -t -t
( —z—z(a +1)( )

- —zzﬂ( )% - “2“( -1, -n"

( a’hp? n azhpqﬁ(-l)n 1
—5 B (-1 0

2D D DD

gy oo gl
2(a%+1) (o) 2(a%1) (-aD)
\ 0 0 - E;'h'('l)na
2, 2 %, /
[a"hp n° a pqn(-_l)n 0 )
2 2
i—hz'f-q“;(-l)" -1t 0
. . .az(-uf,)( n

\ 2(a™+1) /
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[ " 0 |
M} (,q,,h) = 0 -n*

: 2 2
- =B —p(-1)" - —S—hq (-1)"

| 2(a™+1) 2(a"™+1)

For a simple pole at q = q, = |pl

l;es (e u,(p,a)} = (11;”“1‘0 {(a-qp) e's uy ®»q)}
0

= e-ylpl lm {(q'qo) UO(P’QJ}
T

For a double pole

, . ) 4
Res (e y (p,q)} = :‘f‘?o 3q (@ap)” 7% uy(p,a))
0

o lim iyq 3 32 . iyq PRy
e (679 55 {(@ag)” up} + iy €7 {{a-ap) ug}]

« V1Bl pes u p,) + 3y €71P s ycup)
%

For higher order poles, correspondingly higher order powers of

42

2
2 wp(-1)" |

2
Zhap (1"

-n"

y appear.
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